

LEGEND:

FURNITURE BY PIMA COUNTY

NOTES:

- 1. FURNITURE PLAN TO BE USED FOR PROPER COORDINATION OF ELECTRICAL, DATA AND SWITCHING LAYOUT FOR SPACES SHOWN.
- 2. FURNITURE PLAN TO BE USED TO PROVIDE ADDITIONAL BLOCKING WHERE NOTED

FURNITURE SHOWN

FOR REFERENCE ONLY

3. REFER TO PLANS FOR CONTRACTOR PROVIDED BUILT IN MILLWORK AND COUNTER TOPS

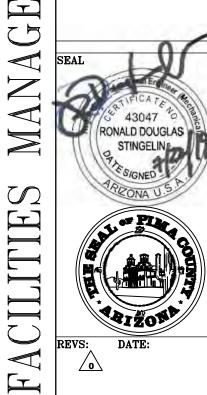
ARIZON

CONGRESS

ADMIN VINTERIC

AGEMENT FACILITIES

DRWN BY: SS
CKD BY: EAV
DATE: 07/22/19
SCALE: AS NOTED
SHEET NO:


PIMA 19*10427

INTERIOR FURNITURE PLAN

 \forall

ARIZONA

TUCSON

DRWN BY: AG
CKD BY: JMZ
DATE: 2019/07/22
SCALE: NTS SHEET NO:

19*10427

- A. SYSTEM PIPING LAYOUT, INCLUDING PIPE SIZING, SHALL BE PERFORMED BY THE SPRINKLER CONTRACTOR. SEE SPECIFICATIONS.
- THIS BUILDING FLOOR SHALL BE PROTECTED WITH A HYDRAULICALLY CALCULATED WET PIPE SPRINKLER SYSTEM. ROOMS/SPACES SHALL BE CONSIDERED AS LIGHT HAZARD OCCUPANCIES UNLESS NOTED OTHERWISE.
- C. WET PIPE AUTOMATIC SPRINKLER SYSTEM SHALL BE INSTALLED IN ACCORDANCE WITH NFPA 13, STATE OF ARIZONA FIRE MARSHALL'S OFFICE AND ALL LOCAL REQUIREMENTS.
- D. PENDANT SPRINKLER HEADS SHALL BE RECESSED TYPE WITH 2-PIECE ESCUTCHEON PLATES.
- E. EXISTING SPRINKLER RISER SUPPLIED FROM A FIRE PUMP LOCATED IN THE BASEMENT. SEE FIRE PUMP TEST DATA ON THIS SHEET.
- F. DEMO ALL (E) PIPING BACK TO (E) RISERS.
- G. FP PIPING SHALL NOT PASS THROUGH ELECTRICAL NOR TELECOM ROOMS.
- H. SEE SPECIFICATIONS FOR HAZARD CLASSES

KEYNOTES

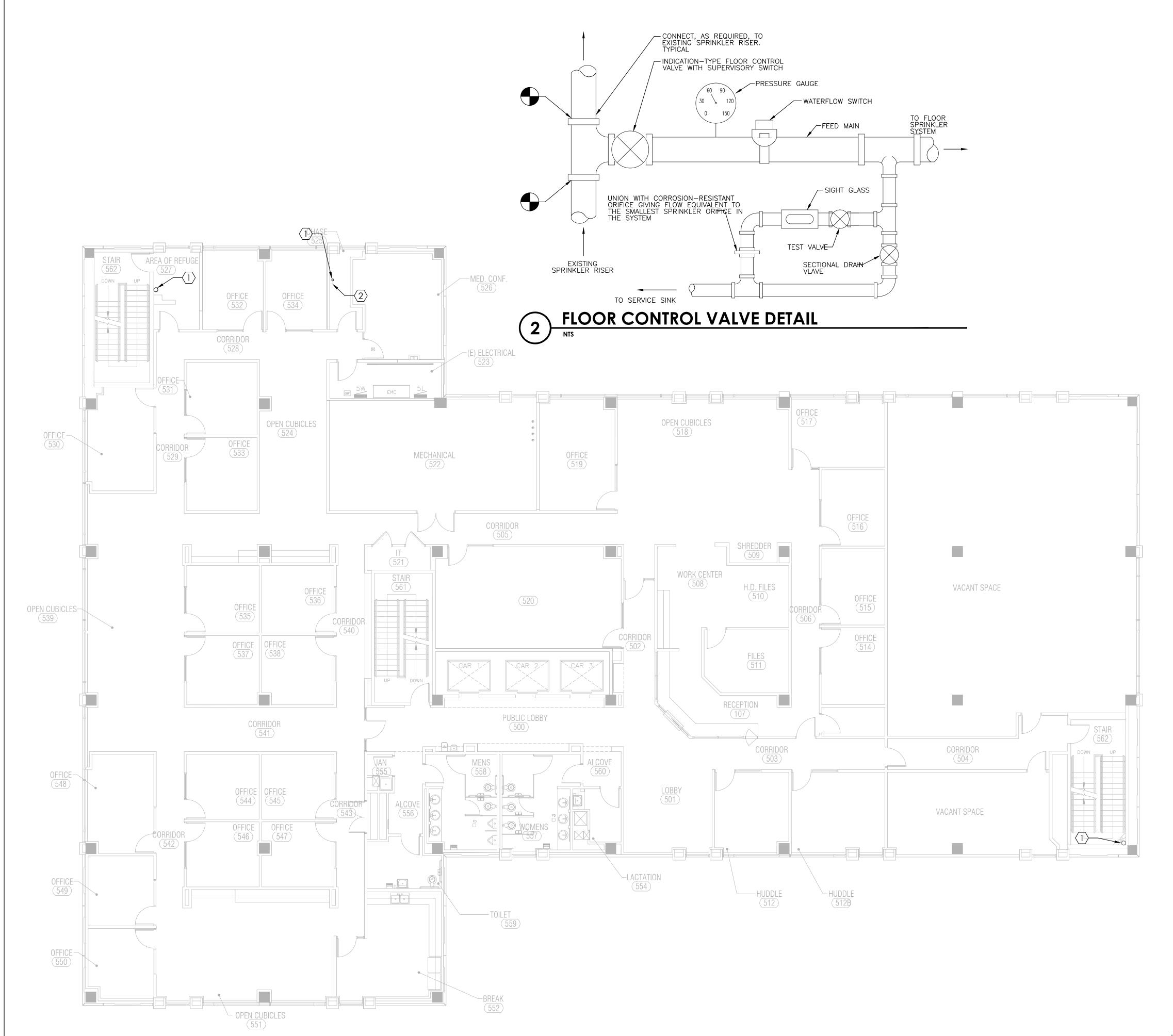
- 1. EXISTING 4" STANDPIPE RISER.
- 2. PREFERRED LOCATION OF NEW SPRINKLER SYSTEM FLOOR CONTROL VALVE ASSEMBLY. SEE DETAIL ON THIS SHEET.

FIRE PUMP TEST DATA

BELOW DATA IS AS PROVIDED BY UNITED FIRE EQUIPMENT COMPANY. FULL TEST REPORTS ARE AVAILABLE FROM PIMA COUNTY.

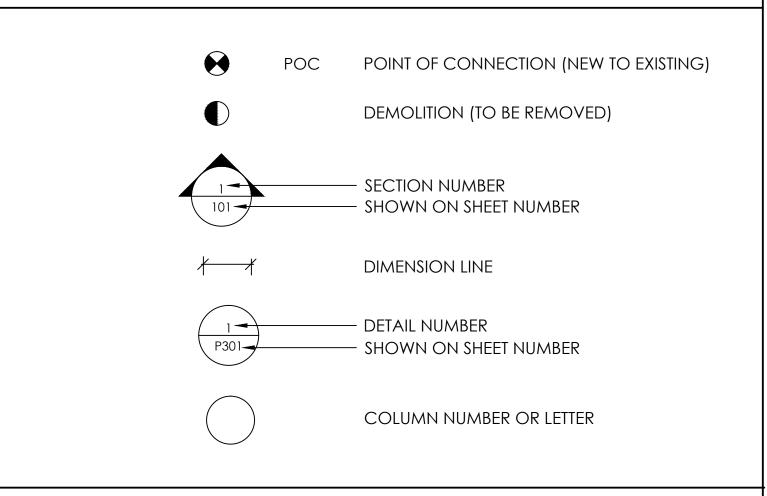
TEST DATE:

03/07/2019

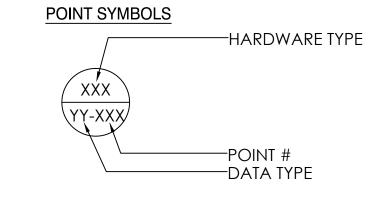

FIRE PUMP NAMEPLATE DATA FLOW HEAD SPEED
GPM FT_H20 RPM 500 173 1770 5 ELECT.

					TEST (DATA				
	SPEED	DISCHARGE	SUCTION	NET HEAD		STREAMS		PERCENT		
	RPM	PSIG	PSIG	PSIG	NO.	SIZE	PITOT PRESSURE	CAPACITY	AMP	VOLTS
ľ	1700	150	45	0.5	NI/A	NI/A	NI/A	CHIIDN	4.4	200

ARCHITECTS & ENGINEERS, INC


2939 E. Broadway Blvd, Tucson, AZ 85716 T 520.881.4546 F 520.795.1822 GLHN.com

PSIG	PSIG	PSIG	NO.	SIZE	PITOT PRESSURE	CAPACITY	AMP	VOLIS
150	65	85	N/A	N/A	N/A	CHURN	44	280
125	55	70	2	1.75	16	100%	55	280
95	25	70	2	1.75	16	150%	62	280



FIRE PROTECTION FLOOR 5 PLAN

GENERAL SYMBOLS LEGEND

CONTROL POINTS

DATA TYPES Αl

ANALOG INPUT ANALOG OUTPUT BINARY INPUT

BINARY OUTPUT ВО COMM COMMUNICATION (DATA)

HARDWARE TYPES

ALA ALARM DATA DIFFERENTIAL PRESS FLOW HUMIDITY

PRESS

FINAL FILTER

FEET PER SECOND

FPM FEET PER MINUTE

POS POSITION TEMP TAL TEMP ALARM LOW SPD SPEED SS START/STOP

ST STATUS

PAH PRESS ALARM HIGH

ABBREVIATIONS

L				
ſ	ABBR	ABBREVIATION	FT	FOOT/FEET
l	A/E	ARCHITECT / ENGINEER	GA	GAUGE, GAGE
l	AD	ACCESS DOOR	GAL	GALLON
l	AF	AFTER FILTER	GPH	GALLONS PER HOUR
l		ABOVE FINISHED FLOOR	GPM	GALLONS PER MINUTE
l	AHU	AIR HANDLING UNIT	НВ	HOSE BIBB
l		AMPERES	HC	HEATING COIL
l		AIR PRESSURE DROP	HP	HORSE POWER
l		APPROXIMATE	HR	HOUR
l		ARCHITECTURAL	HSTAT	
l		AIR VENT		HOT WATER COIL
l		AVERAGE		HEATING HOT WATER RETURN
l	BAS	BLDG. AUTOMATION SYSTEM		HEATING HOT WATER SUPPLY
l	BDD	BACKDRAFT DAMPER	HZ	HERTZ
l	BHP	BRAKE HORSEPOWER		
l			IAQ	INDOOR AIR QUALITY
l	BOD	BOTTOM OF DUCT	ID	INSIDE DIAMETER
l	BTU	BRITISH THERMAL UNIT	IN	INCH
l	BTUH	BRITISH THERMAL UNIT PER HOUR		INCH WATER COLUMN
l	CC	COOLING COIL		INCH WATER GAUGE
l	CD		KWH	KILOWATT HOUR
l	CFM	CUBIC FEET PER MINUTE	LAT	LEAVING AIR TEMPERATURE
l		CHILLED WATER RETURN	LBS	POUNDS
l		CHILLED WATER SUPPLY	LVR	LOUVER
l	CL	CENTERLINE	LWT	LEAVING WATER TEMPERATURE
l	CLG	COOLING	MA	MIXED AIR
l	CP	CONDENSATE PUMP	MAT	MIXED AIR TEMPERATURE
l	CV	CONTROL VALVE	MAX	MAXIMUM
l	D	DRAIN	MBD	MANUAL BALANCING DAMPER
l	DB	DRY-BULB TEMPERATURE	MBH	1000 BTUH
l		DOMESTIC COLD WATER	MERV	MINIMUM EFFICIENCY REPORTING
l	DDC	DIRECT DIGITAL CONTROLS		VALUE
l	DEG	DEGREE	MIN	MINIMUM
l	DIA	DIAMETER	(N)	NEW
l	DN	DOWN	N/A	NOT APPLICABLE
l	DP	DIFFERENTIAL PRESSURE	NC	NOISE CRITERIA
l	(E)	EXISTING	NC	NORMALLY CLOSED
l	EA	EXHAUST AIR	NO	NORMALLY OPEN
l	EAT	ENTERING AIR TEMPERATURE	MOM	NOMINAL
l	EF	EXHAUST FAN	NPS	nominal pipe size
l	EG	EXHAUST GRILLE	NTS	NOT TO SCALE
l	ESP	EXTERNAL STATIC PRESSURE	OA	OUTSIDE AIR
l	EWT	ENTERING WATER TEMPERATURE	OBD	OPPOSED BLADE DAMPER
l	F	FAHRENHEIT	OC	ON CENTER
١	FSD	COMBINATION FIRE SMOKE DAMPER	OD	OUTSIDE DIAMETER
	FA	FIRE ALARM	OFCI	OWNER FURNISHED CONTRACTO
	FCU	FAN COIL UNIT		INSTALLED
	FD	FIRE DAMPER	OFOI	OWNER FURNISHED OWNER
1	гг	FINIAL FUTED		1) 10T 1 1 1 ED

INSTALLED

PRE-FILTER

PG PRESSURE GAUGE

ABBREVIATIONS

PHASE PH PHC PREHEAT COIL POC POINT OF CONNECTION PPM PARTS PER MILLION POUNDS PER SQUARE INCH POUNDS PER SQUARE INCH – ABSOLUTE POUNDS PER SQUARE INCH – GAUGE RETURN AIR RETURN AIR TEMPERATURE REA RELIEF AIR **RETURN FAN** RG RETURN GRILLE RELATIVE HUMIDITY RHC REHEAT COIL REVOLUTIONS PER MINUTE SUPPLY AIR SAD SUPPLY AIR DIFFUSER SAG SUPPLY AIR GRILLE SUPPLY AIR TEMPERATURE SD SMOKE DAMPER SENS SENSIBLE COOLING CAPACITY SUPPLY FAN SHUT OFF VALVE SOVSTATIC PRESSURE SQFT SQUARE FOOT (FEET)

STAINLESS STEEL TESTING, ADJUSTING, AND BALANCING TEMP **TEMPERATURE**

TG TRANSFER GRILLE TOP OF DUCT (EXCLUDING INSULATION WRAP)

TSP TOTAL STATIC PRESSURE TSTAT THERMOSTAT **TERMINAL UNIT** TU

TYP TYPICAL **VOLTAGE** VA **VOLT AMPERE**

VAVVARIABLE AIR VOLUME VFD VARIABLE FREQUENCY DRIVE

WB WET BULB TEMPERATURE WATER COLUMN WG WATER GAUGE

WPD WATER PRESSURE DROP

ADDITIONAL NOTES

COMMISSIONING

COMMISSIONING OF SYSTEMS SHALL BE PROVIDED UNDER THIS PROJECT TO MEET THE MINIMUM REQUIREMENTS OF IECC-2019. ITEMS TO BE PROVIDED INCLUDE THE COMMISSIONING PLAN, PRELIMINARY COMMISSIONING REPORT, AND FINAL COMMISSIONING REPORT. ALL REQUIRED COMMISSIONING DOCUMENTS SHALL BE PROVIDED TO OWNER WITHIN 90 DAYS OF RECEIPT OF THE CERTIFICATE OF OCCUPANCY AND SHALL BE SUBMITTED TO THE AUTHORITY HAVING JURISDICTION PER IECC REQUIREMENTS. SEE SPECIFICATIONS FOR FURTHER REQUIREMENTS.

PRE-DEMO TAB SURVEYS

PRE-DEMOLITION TAB SURVEYS WILL BE REQUIRED IN THIS PROJECT TO MITIGATE THIS WORK'S IMPACT ON OTHER FLOORS. SEE SOW DESCRIPTIONS ELSEWHERE IN THESE DOCUMENTS (E.G. DEMOLITION

GENERAL MECHANICAL NOTES

MECHANICAL WORK SHALL CONSIST OF LABOR, MATERIALS AND EQUIPMENT REQUIRED TO FURNISH AND INSTALL MECHANICAL SYSTEMS AS SPECIFIED AND SHOWN IN THE CONTRACT DOCUMENTS.

ALL WORK MUST COMPLY WITH THE PIMA COUNTY DESIGN STANDARDS AND ALL ADOPTED CODES AND STANDARDS. THIS INCLUDES, BUT IS NOT LIMITED TO 2018 I-CODES. ADDITIONALLY ALL WORK MUST COMPLY WITH THE FOLLOWING: ASHRAE STANDARD 90.1, AIR CONDITIONING AND REFRIGERATION INSTITUTE, ASSOCIATED AIR BALANCE COUNCIL, AMERICAN WATER WORKS ASSOCIATION, ASHRAE STANDARD 62.1, 2016.

DRAWINGS ARE DIAGRAMMATIC AND DO NOT INDICATE ALL PIPE, FITTINGS, ETC., AS REQUIRED FOR ALL CONDITIONS. VERIFY EXACT LOCATION OF EQUIPMENT AND INSTALLATION REQUIREMENTS. COORDINATE WORK WITH OTHER TRADES SO THAT INTERFERENCE BETWEEN OTHER TRADES AND CONDUIT, PIPING, DUCTS, ARCHITECTURAL AND STRUCTURAL EQUIPMENT AND MATERIALS WILL BE AVOIDED.

ALL WORK THAT WILL IMPACT ADDITIONAL FLOORS SHALL BE COORDINATED WITH PIMA COUNTY FACILITIES MANAGEMENT DEPARTMENT (IN WRITING), 7 DAYS PRIOR TO SCHEDULED WORK. WORK SHALL BE SCHEDULED AFTER HOURS, WEEKENDS AND/OR HOLIDAYS UNLESS OTHERWISE ARRANGED WITH PCFM. APPROVAL FROM PCFM SHALL BE OBTAINED (IN WRITING) PRIOR TO START OF WORK.

MAXIMUM DEVELOPED LENGTH OF FLEX DUCTS = 5 FT.

2939 E. Broadway Blvd, Tucson, AZ 85716 T 520.881.4546 F 520.795.1822 GLHN.com

0 4 ≥ ט

085

 \forall

NOZ

SON

 \bigcirc

 \mathcal{O}

ILITIE

TIOL 140. C ADMINIS 150 WES TUCSON

DRWN BY: AG CKD BY: JMZ DATE: 2019/07/22 SCALE: NTS SHEET NO:

W.O. NUMBER 19*10427

 \mathcal{O}

19*10427

PRIOR TO ANY HVAC MODIFICATION WORK, THE BELOW TAB SURVEY SCOPE SHALL BE PERFORMED AND THE RESULTS REPORTED TO THE OWNER AND ENGINEER.

- 1. PROVIDE TRAVERSE TO DETERMINE TOTAL AIRFLOW AND
- VELOCITY IN RISER DUCT SERVING FLOORS 1 AND 2. 2. PROVIDE TRAVERSE OF TO DETERMINE TOTAL AIRFLOW VOLUME SERVING FLOORS 1, 2, AND 5.
- 3. PROVIDE ROOFTOP FAN TEST FOR EXHAUST FAN SERVING FLOORS 1, 2, AND 5 INCLUDING BUT NOT LIMITED TO TOTAL AIRFLOW, FAN/MOTOR RPM, MOTOR NAMEPLATE AND RUNNING AMPS, AND NAMEPLATE DATA.

GENERAL NOTES

- A. CONTRACTOR SHALL COORDINATE LOCATION OF ABOVE CEILING UNITS WITH CEILING GRID SUCH THAT ACCESS TO THE UNIT IS NOT OBSTRUCTED BY THE CEILING GRID OR OTHER IN-CEILING ELEMENTS. COORDINATE REQUIREMENTS WITH ALL TRADES.
- ALL HVAC COMPONENTS THAT UTILIZE ENERGY SHALL HAVE A MINIMUM 30X30" SERVICE PLANE PER IMC-2018 SECTION 306.1 REQUIREMENTS. COORDINATE INSTALLATIONS WITH ALL TRADES.
- C. ALL ABOVE CEILING HVAC EQUIPENT (E.G. TUS AND FCU) SHALL INCLUDE LABELS ON THE CEILING GRID NEAR THE MAIN ACCESS LOCATION INDICATING THE UNIT MARK. COORDINATE WITH COUNTY LABELING REQUIREMENTS.
- D. SEE SCHEDULES AND DETAILS FOR TERMINAL UNIT AND TERMINAL UNIT RUNOUT SIZES AND
- E. MAXIMUM LENGTH OF FLEX TO AIR DEVICES 6 FT INCLUDING HORIZONTAL AND VERTICAL TOTAL BENDS IN FLEX DUCT SHALL NOT EXCEED 90 DEGREES
- F. ALL PLENUM RETURN GRILLES TO RECEIVE RETURN LINED RETURN BOOT. SEE DETAILS SHEET FOR FURTHER INFORMATION.

DEMOLITION KEYNOTES

- EXISTING 14X12 DUCT STACKED ON TOP OF ADDITIONAL 14X12 DUCT. BOTTOM DUCT TO REMAIN. TOP DUCT TO BE REMOVED.
- 2. REMOVE 14X12 DUCT THROUGH STRUCTURE ABOVE. CAP AND SEAL DUCT JUST ABOVE FLR. 6 OPENING. SEAL OPENING TO MAINTAIN FIRE/SMOKE RATING. COORDINATE WITH OWNER FOR ACCESS TO FLR. 6.
- 3. REMOVE 14X12 DUCT THROUGH FLR. PENETRATION TO FLR 4. SEAL OPENING TO MAINTAIN FIRE/SMOKE RATING. COORDINATE WITH OWNER FOR ACCESS TO FLR 4 RISER CLOSET.
- ABANDONED 10X22 EXHAUST DUCT TO BE REMOVED THROUGH STRUCTURE ABOVE. CAP AND SEAL DUUCT JUST ABOVE FLR. 6 OPENING. SEAL OPENING TO MAINTAIN FIRE/SMOKE RATING. COORDINATE WITH OWNER FOR ACCESS TO FLR. 6
- EXISTING 10X22 EXHAUST DUCT TRANSITIONING TO 10X30 AT FLR. REMOVE DUCT THROUGH FLOOR PENETRATION TO FLR. 4. SEAL OPENING TO MAINTAIN FIRE/SMOKE RATING. COORDINATE WITH OWNER FOR ACCESS TO FLR. 4 RISER CLOSET.
- 6. REMOVE EXISTING FLR. 5 EXHAUST TAKEOFFS BACK TO MAIN. PATCH OPENINGS. SEE NEW
- WORK FOR NEW FLR. 5 SERVICE DUCTWORK. 7. EXHAUST DUCT TO REMAIN. 18X10 ABOVE TRANSITIONING TO 20X12 AT FLR.
- 8. EXHAUST DUCT TO REMAIN. DUCT IS 30X24 AT WEST PENETRATION FROM FLR. 6; 26X24 AT EAST PENETRATION DOWN TO FLR. 4.

NEW WORK KEYNOTES

- 1. FURNISH AND INSTALL NEW BALANCING DAMPER ON EXISTING 26X24 EXHAUST DUCT. F VERIFY SIZE PRIOR TO PROCUREMENT. BRANCH TO LOWER FLOORS TO BE SET BACK TO PRE-DEMOLITION AIRFLOW RATE DURING FINAL TAB.
- 2. SUGGESTED LOCATION OF MAIN CONTROL ENCLOSURE AND POWER TRANSFORMER CONTROLS CONTRACTOR SHALL PROPOSE FINAL LOCATION OF OWNER AND ENGINEER APPROVAL, COORDINATE LOCATION AND CLEARANCE REQUIREMENTS WITH ALL OTHER
- SUGGESTED LOCATION OF ABOVE CEILING TERMINAL UNIT POWER TRANSFORMER. CONTROLS CONTRACTOR SHALL PROPOSE FINAL LOCATION OF OWNER AND ENGINEER
- 4. NEW 20X18 ADJUSTABLE BAROMETRIC BACKDRAFT DAMPER IN RELIEF AIR DUCT. PROVIDE WITH 12X12 ACCESS DOOR IN BOTTOM OF DUCT FOR DAMPER MAINTENANCE AND
- 5. ACCESS PANEL IN HARD CEILING, MINIMUM 24x24, COORDINATE WITH ARCHITECTURAL DRAWINGS.
- EXISTING EXHAUST DUCT TO REMAIN.
- SUGGESTED LOCATION OF DUCT STATIC PRESSURE SENSOR. CONTROLS CONTRACTOR SHALL SUBMIT FINAL LOCATION TO OWNER AND ENGINEER FOR APPROVAL.
- ALL RETURN AIR DEVICES TO BE TYPE RG-1 UNLESS OTHERWISE INDICATED. 10x10 CEILING TO CEILING TRANSFER DUCT WITH TWO RG-3 DEVICES, SEE MECHANICAL DETAILS FOR FURTHER REQUIREMENTS.
- 10. 24x12 CEILING TO CEILING TRANSFER DUCT WITH TWO RG-2 DEVICES, OFFSET DUCT IN VERTICAL AS NECESSARY TO MATCH TO CEILING GRIDS SEE MECHANICAL DETAILS FOR FURTHER REQUIREMENTS.
- 11. EXISTING EXHAUST DUCT TO REMAIN. PROVIDE SHEET METAL CAP AND SEAL ON
- ABANDONED 8" TAP ON WEST SIDE OF HORIZONTAL DUCT. 12. 12x10 SUPPLY DUCT DOWN TO SG-3 AIR DEVICE IN SOFFIT, PROVIDE SHEET METAL PLENUM ON BACK OF AIR DEVICE FOR CONNECTION.

2939 E. Broadway Blvd, Tucson, AZ 85716 T 520.881.4546 F 520.795.1822 GLHN.com

(539)

1 1

MECHANICAL FLOOR 5 DEMOLITION PLAN

20x24

AREA OF REFUGE

OFFICE – (530)

OPEN CUBICLES-

(E) ELECTRICAL

TYP 2 VACANT SPACE

10Ø 215 TYP 4

MECHANICAL FLOOR 5 NEW WORK PLAN

TYP 4

520)740

ARIZONA

KEYNOTES

0.5 GPM. SEE DETAILS.

PIPE, FIELD VERIFY LENGTHS)

PIPE, FIELD VERIFY LENGTHS)

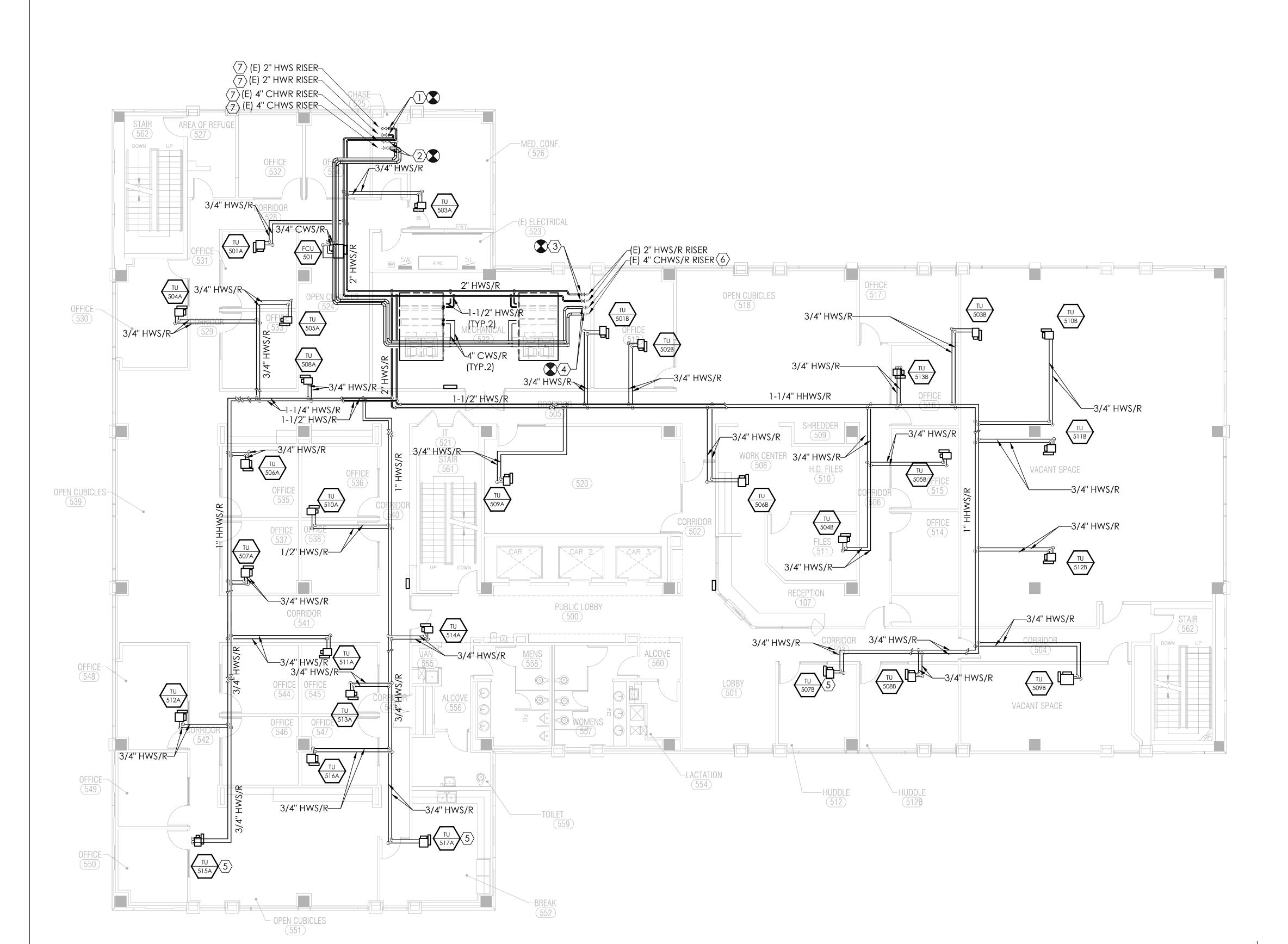
CONNECT (N) 2" HHWS/R TO (E) 2" SHUTOFF VALVES 2. CONNECT (N) 4" CHWS/R TO (E) 4" SHUTOFF VALVES

3. CONNECT (N) 2" HHWS/R TO (E) 2" SHUTOFF VALVES 4. CONNECT (N) 4" CHWS/R TO (E) 4" SHUTOFF VALVES

VALVE TO BETTER ENSURE BRANCH CIRCULATION. PROVIDE WITH CIRCUIT SETTER IN BYPASS AND SET AT

6. RE-INSULATE (E) CHWS/R RISER AND BRANCH PIPING

7. RE-INSULATE (E) CHWS/R AND HHWS/R RISER PIPING


WHERE INSULATION IS MISSING (APPROX. 15 FT. EACH

WHERE INSULATION IS MISSING (APPROX. 12 FT. EACH

5. PROVIDE TERMINAL UNIT WITH 3-WAY CONTROL

DRWN BY: AG
CKD BY: JMZ
DATE: 2019/07/22
SCALE: NTS SHEET NO:

PIMA 19*10427

MECHANICAL PIPING FLOOR 5 NEW WORK PLAN

ARCHITECTS & ENGINEERS, INC

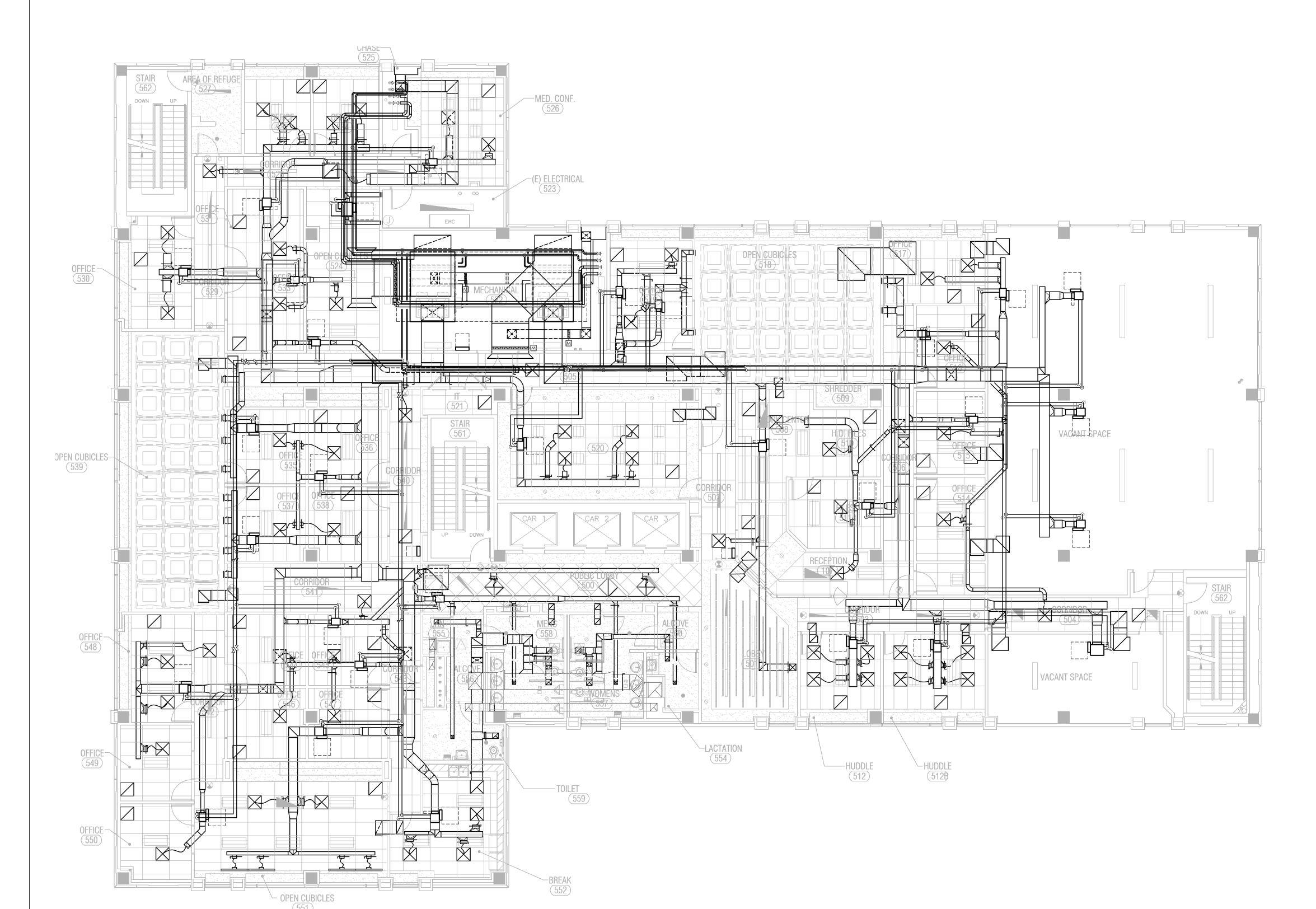
2939 E. Broadway Blvd, Tucson, AZ 85716 T 520.881.4546 F 520.795.1822 GLHN.com

40

ARIZONA

SON

GRESS


WEST

230F 48
W.O. NUMBER
19*10427

2939 E. Broadway Blvd, Tucson, AZ 85716 T 520.881.4546 F 520.795.1822 GLHN.com

GENERAL NOTES

- A. CONTRACTOR SHALL COORDINATE LOCATION OF ABOVE CEILING UNITS WITH CEILING GRID SUCH THAT ACCESS TO THE UNIT IS NOT OBSTRUCTED BY THE CEILING GRID OR OTHER IN-CEILING ELEMENTS. COORDINATE REQUIREMENTS WITH ALL TRADES.
- B. ALL HVAC COMPONENTS THAT UTILIZE ENERGY SHALL HAVE A MINIMUM 30X30" SERVICE PLANE PER IMC-2018 SECTION 306.1 REQUIREMENTS. COORDINATE INSTALLATIONS WITH ALL TRADES.
- C. ALL ABOVE CEILING HVAC EQUIPENT (E.G. TUS AND FCU) SHALL INCLUDE LABELS ON THE CEILING GRID NEAR THE MAIN ACCESS LOCATION INDICATING THE UNIT MARK. COORDINATE WITH COUNTY LABELING REQUIREMENTS.
- D. SEE SCHEDULES AND DETAILS FOR TERMINAL UNIT AND TERMINAL UNIT RUNOUT SIZES AND ARRANGEMENTS.
- E. MAXIMUM LENGTH OF FLEX TO AIR DEVICES 6 FT INCLUDING HORIZONTAL AND VERTICAL TOTAL BENDS IN FLEX DUCT SHALL NOT EXCEED 90 DEGREES.
- F. ALL PLENUM RETURN GRILLES TO RECEIVE RETURN LINED RETURN BOOT. SEE DETAILS SHEET FOR FURTHER INFORMATION.

MECHANICAL FLOOR 5 COORDINATION PLAN

1/8" = 1'-0"

-

GEME

MA

FACILITIES

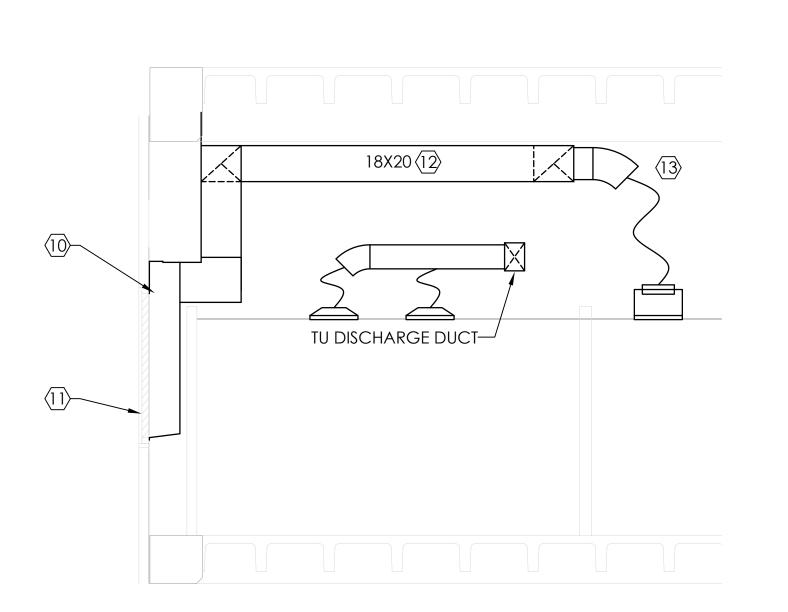
DRWN BY: **AG**CKD BY: **JMZ**DATE: **2019/07/22**

SHEET NO:

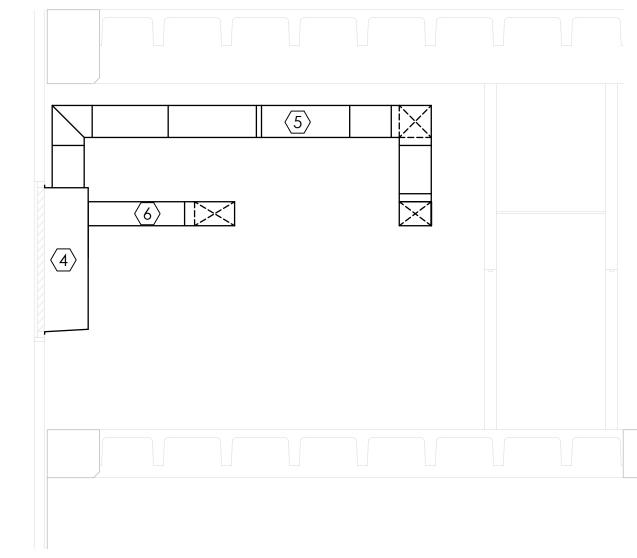
19*10427

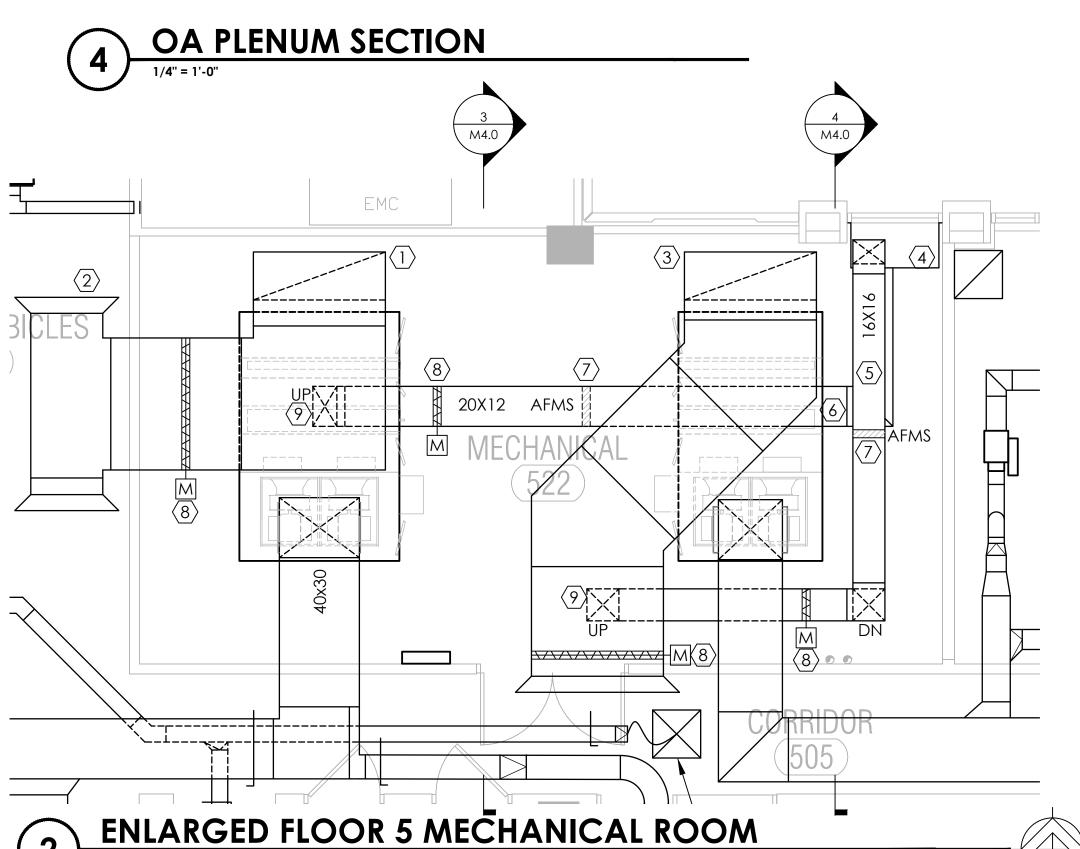
ARI

A. ALL WORK THAT WILL IMPACT ADDITIONAL FLOORS SHALL BE COORDINATED WITH PIMA COUNTY FACILITIES MANAGEMENT DEPARTMENT (IN WRITING), 7 DAYS PRIOR TO SCHEDULED WORK. WORK SHALL BE SCHEDULED AFTER HOURS, WEEKENDS AND/OR HOLIDAYS UNLESS OTHERWISE ARRANGED WITH PCFM. APPROVAL FROM PCFM SHALL BE OBTAINED (IN WRITING) PRIOR TO START OF WORK.


GENERAL NOTES

- 1. NEW 66X24 RETURN DUCT PLENUM. CONNECT TO FULL SIZE OF UNIT OPENING AND SUPPORT FROM FLOOR. CONTINUE WITH 66X24 THROUGH WEST MECHANICAL ROOM WALL INTO THE ABOVE CEILING RETURN AIR PLENUM.
- 2. 36X20 RETURN DUCT WITH BELL MOUTH OPENING. (TYP 2)
- 3. NEW 66X24 RETURN DUCT PLENUM. CONNECT TO FULL SIZE OF UNIT OPENING AND SUPPORT FROM FLOOR. CONTINUE WITH 66X24 THROUGH SOUTH MECHANICAL ROOM WALL INTO THE ABOVE CEILING RETURN AIR PLENUM.
- 4. SHEET METAL OA PLENUM, MINIMUM 22 INCHES DEEP. PLENUM TO BE FULL SIZE OF EXISTING TO BE REUSED 42X80 LOUVER. BOTTOM OF PLENUM TO BE SLOPED MINIMUM 1/8" PER FT BACK TO LOUVER FOR DRAINAGE. ATTACH PLENUM FRAME TO LOUVER AND SEAL WEATHER TIGHT.
- 5. NEW 16X16 OA DUCT FROM TOP OF OA PLENUM. ROUTE TO AHU-5B RA DUCTWORK. 6. NEW 20X12 OA DUCT BELOW 16X16 DUCT. ROUTE TO AHU-5A RETURN AIR DUCTWORK.
- 7. OA AIRFLOW MONITORING STATION. INSTALL PER MANUFACTURER'S MINIMUM STRAIGHT
- LENGTH REQUIREMENTS. SEE CONTROL DIAGRAMS.
- 8. MOTORIZED CONTROL DAMPER. SEE CONTROL DIAGRAMS. 9. CONNECT NEW 20X12 OA DUCT TO THE BOTTOM OF NEW RA DUCT.
- 10. NEW RELIEF AIR PLENUM TO BE FULL HEIGHT OF LOUVER, MAXIMUM WIDTH AS THE NEW
- PARTITION ALLOWS, WITH MINIMUM 10" DEPTH. EXTEND PLENUM ABOVE LOUVER AS NECESSARY TO AVOID INTERFERENCE WITH NEW PARTITION. BOTTOM OF PLENUM TO BE SLOPED MINIMUM 1/8" PER FT BACK TO LOUVER FOR DRAINAGE. ATTACH PLENUM FRAME TO LOUVER AND SEAL WEATHER TIGHT.
- 11. EXISTING 42X80 LOUVER TO BE REUSED.
- 12. NEW RELIEF AIR DUCT WITH ADJUSTABLE BAROMETRIC DAMPER IN DUCT. ROUTE FROM IN CEILING RG-1 AND NEW LVR-1. ROUTE DUCT TIGHT TO STRUCTURE ABOVE SUPPLY AIR DUCTWORK.
- 13. FURNISH AND INSTALL TWO 16"Ø FLEX CONNECTIONS BETWEEN RELIEF DUCT AND RG-1. SEE LAYOUT DRAWINGS AND DETAILS. MAXIMUM 5 FT OF DEVELOPED LENGTH.


AHU-5B SECTION


6 [><]

(5) ><

T 520.881.4546 F 520.795.1822 GLHN.com

 \forall

8570

ARIZONA

FACILITIES

DRWN BY: AG

SCALE: NTS

CKD BY: **JMZ**

SHEET NO:

DATE: 2019/07/22

19*10427

CONGRESS

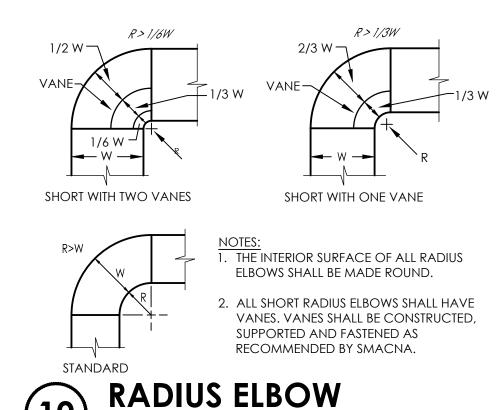
-SINGLE THICKNESS TURNING VANES IN ELBOW ABOVE AND ELBOW BELOW L=18" MAX - LOCKING QUADRANT BALANCING DAMPER (TYPICAL) — FIXED SPLITTER PLATE, DUCT GAUGE ATTACHED TO DUCT AT SPLITTER INTERSECTION AND TIE ROD DIVIDED BRANCH FITTING

5 DUCT TAP MEDIUM PRESSURE

ROUND DUCT

- BALANCING DAMPER

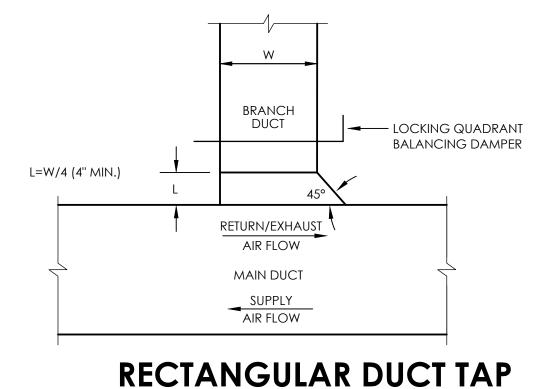
MINIMUM OF 1 DUCT


45° ELBOW R/D=1.5

-ROUND TAKE-OFF

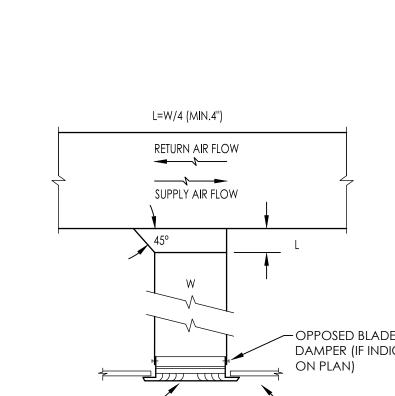
DIAMETER DOWNSTREAM

OF ELBOW - FORMED OR 3 PIECE GORED

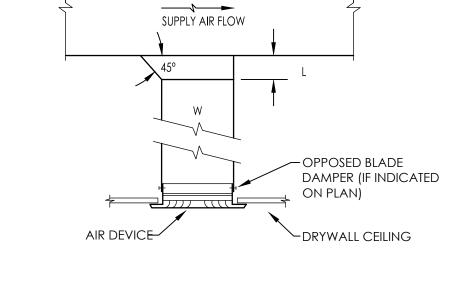

- ¾ DROP IN EXPANSION ANCHOR W/ ¾"Ø BOLTS , ONE ANCHOR PER PIPE

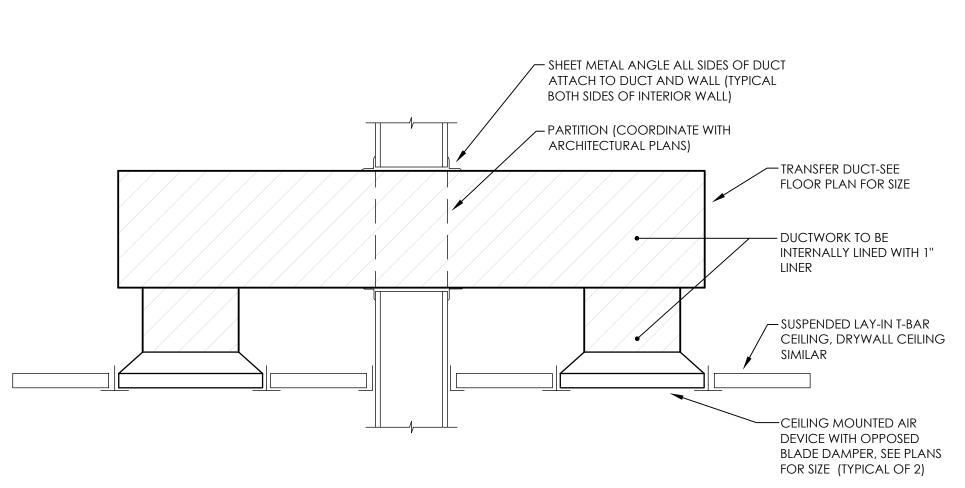
SUPPORT CHANNEL

__1-5/8" SUPPORT CHANNEL


ATTACHED, TWO ANCHORS MINIMUM FOR EACH

_ PIPE STRAP TO BE SECURED AT BOTH SIDES OF PIPE


LOW PRESSURE



EXISTING CONCRETE WALL

— CONCRETE OR MASONARY

- OPENING IN WALL TO BE LARGER THAN FIRE

DAMPER ASSEMBLY

— FIRE/SMOKE DAMPER

STUDS IN DRYWALL

FIRE/SMOKE PARTITION

(SEE ARCH. DWGS.)

- INSTALL SUPPLEMENTARY

FRAMING AND BLOCKING OF

WALL OR FLOOR (SEE ARCH. DWGS.)

-BALANCING DAMPER MINIMUM OF 1 DUCT

DOWNSTREAM OF

ROUND TAKE-OFF

-BELLMOUTH FITTING

DIAMETER

BELLMOUTH

EXTEND FLAT PORTION OF

R=0.2(D) MINIMUM

RECTANGULAR

MEDIUM PRESSURE

ALLOWS FOR DUCT REINFORCING AND INSULATION, BUT NO EXTERNAL LOAD.

NOTE: DAMPERS SHALL BE INSTALLED IN ACCORDANCE WITH THE CONDITIONS OF THEIR

COMBINATION FIRE/

SMOKE DAMPER

LISTING & MANUFACTURER'S INSTALLATION INSTRUCTIONS.

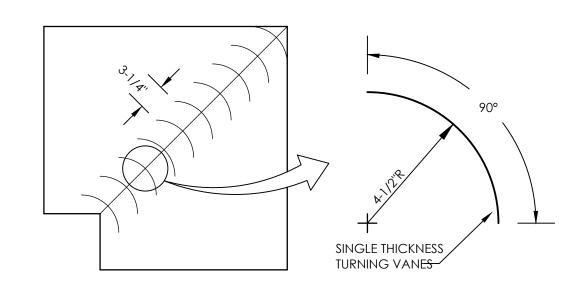
ROUND DUCT SUPPORTS

LOAD RATED FASTENERS

CONICAL TAP

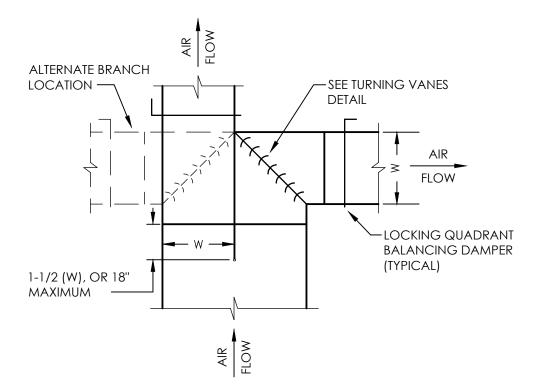
BAND OF SAME SIZE

ACCESS

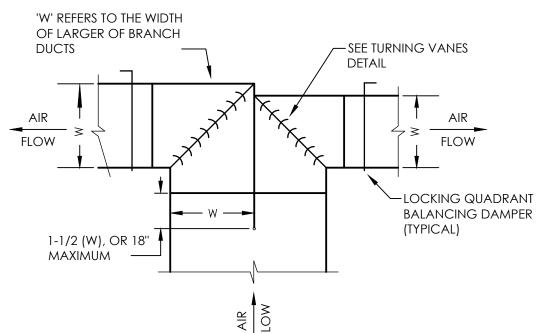

DOOR -

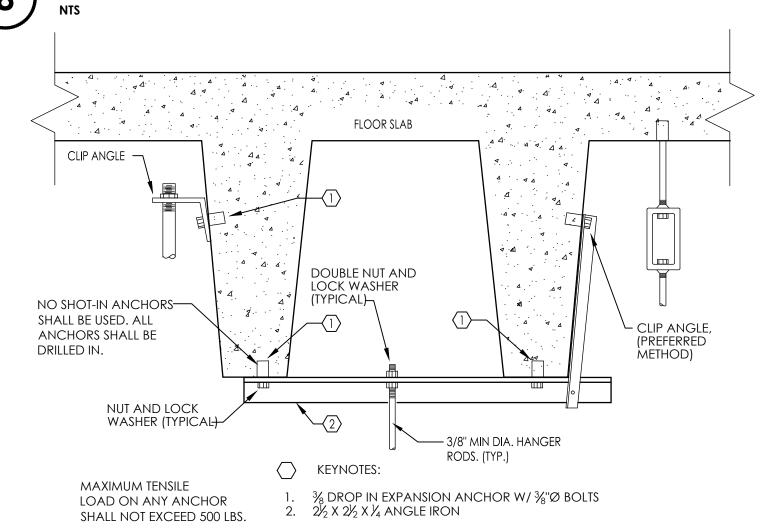
ACTUATOR AND LINK

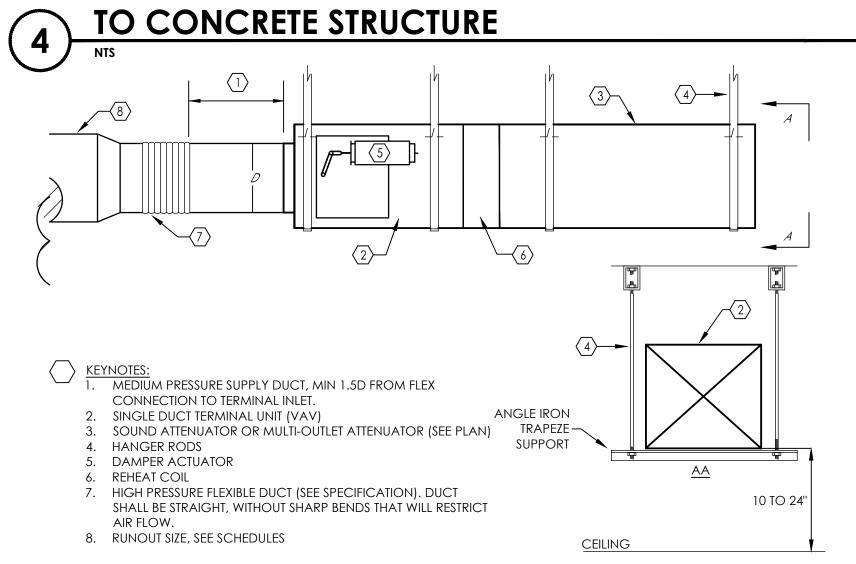
(PART OF DAMPER ASSEMBLY) —


AS HANGER STRAP

FITTING 1" PAST RADIUS —






EQUAL SPLIT - SUPPLY DUCT

UNEQUAL SPLIT - SUPPLY DUCT

TYPICAL METHOD OF SUPPORTS

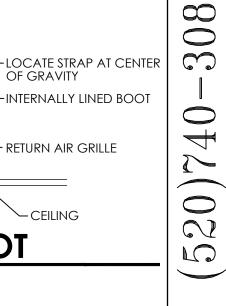
SINGLE DUCT TERMINAL UNIT WITH REHEAT

NON-RATED TRANSFER DUCT

RESS MES ADMINIS 150 WES

CILITIE

 $\mathbb{F}_{\mathbb{A}}$


DRWN BY: AG

SCALE: NTS SHEET NO:

CKD BY: JMZ

DATE: 2019/07/22

19*10427

——2A (MINIMUM) ———

FLEXIBLE DUCT, SUPPORT AS SHOWN

ON CEILING DIFFUSER AND FLEXIBLE

DUCT DETAIL. SEE PLANS FOR SIZES

DAMPER. SECURE WITH CINCH

BANDS, SEAL WITH HARDCAST.

FLEXIBLE DUCT TO RELIEF

SPIN-IN COLLAR WITHOUT MANUAL

SHEET METAL STRAP (TYPICAL EACH SIDE)

SHEET METAL PLENUM

OVER RETURN GRILLE

WITH 1" ACOUSTICAL

DUCT LINER

CEILING —

SHEET METAL AS

SPECIFIED FOR

___ 1 1/2" POCKET SLIP

DUCTWORK.

1 1/2" MIN. TO 3" MAX. INSTALLED. 6"

NOMINAL WITH MATERIAL TAUT

DUCT OR PIPE THROUGH NON-RATED PARTITION

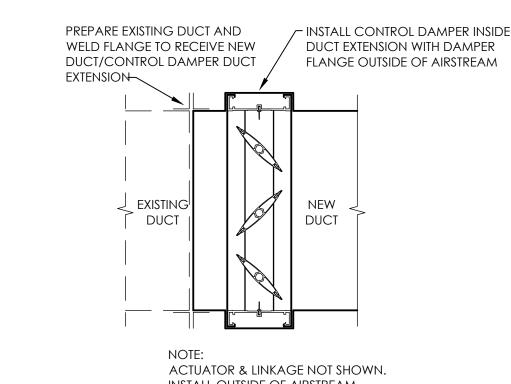
ALTERNATE

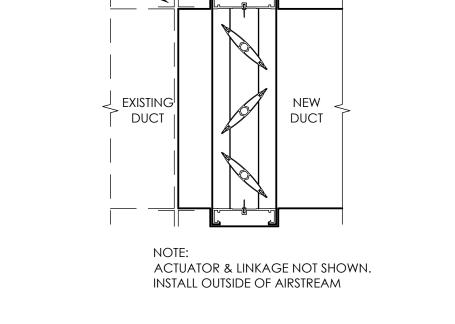
WASHER -

- FLANGED

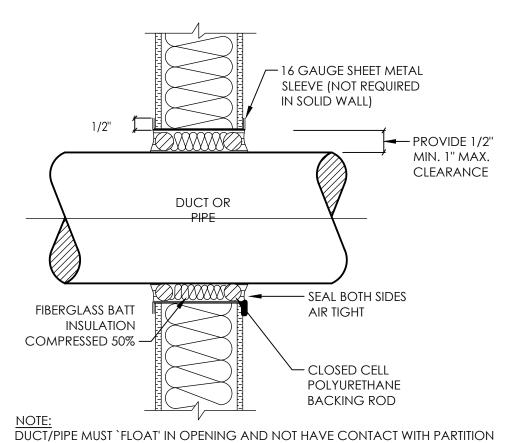
CONNECTION

ON FAN SIDE


SHEET METAL AS


SPECIFIED FOR

DUCTWORK. -


BOLT

POSITION OF

MAX. PIPE/TUBING SUPPORT, FEET

HANGER ROD

INSULATION

SHIELD AT

HANGER

____ 1 5/8" 12 GAGE CHANNEL OR

-INSULATION (VAPOR

BARRIER TYPE IS REQUIRED FOR LOW

TEMPERATURE PIPE)

PROVIDE HIGH COMPRESSIVE

BLOCKS UNDER INSULATION SHIELD

STRENGTH INSULATION INSERT

SIDE VIEW OF TRAPEZE HANGER 2" X 2" X 1/4" ANGLE

ADJUSTABLE CLEVIS HANGER

1/2" DIA. HANGER RODS W/ 36"

PROVIDE INSULATION SHIELD &

INSERT FOR ALL PIPING 8" MAX.

ADJUSTABLE ROLLER HANGER

HANGER ROD —

3-WAY MODULATING —

INCREASER (TYPICAL)

PRESSURE

GAUGE (TYP.)

TEMPERATURE

GAUGE (TYP.)

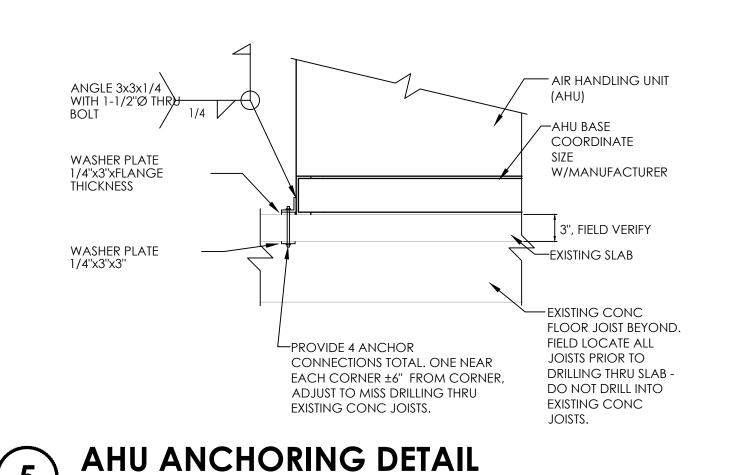
VALVE (TYP.)

SHUT OFF

CONTROL VALVE

BELL REDUCER OR ____

STRAINER WITH 2


AND CAP

BLOW DOWN VALVE,

HOSE CONNECTION,

INSULATION _

MAX. SPACING ON EACH CHANNEL

UNION OR

DRAIN VALVE

FLANGE (TYPICAL)

-AT AIR HANDLERS

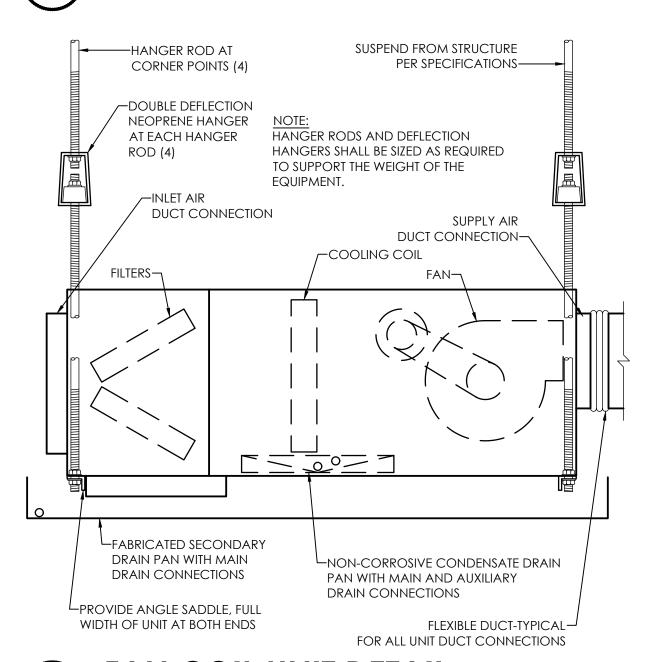
TYPICAL OF ALL

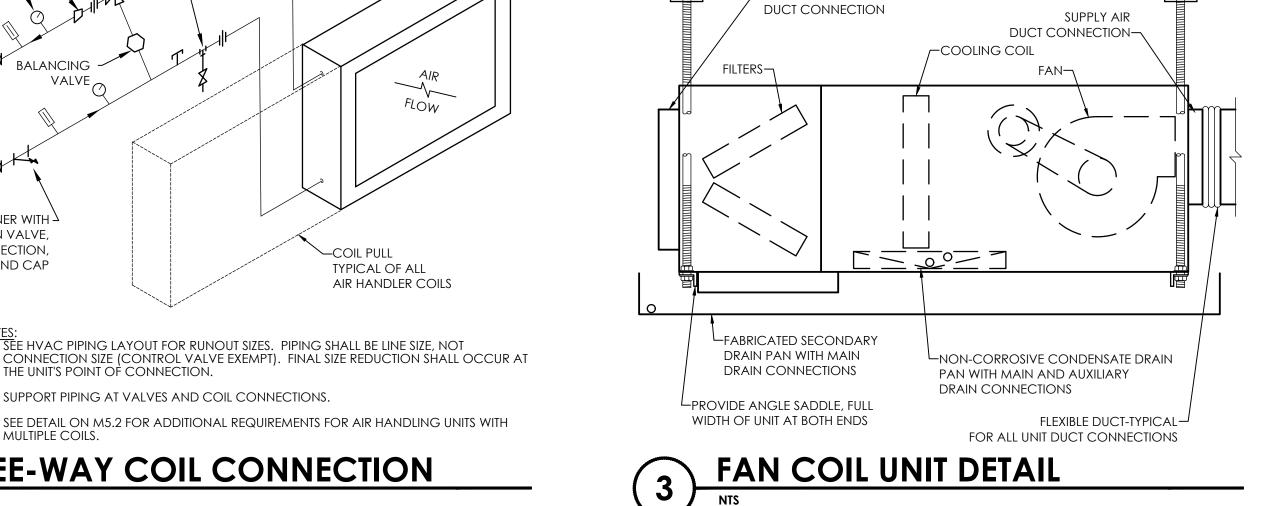
AIR HANDLER COILS

PROVIDE REMOVABLE

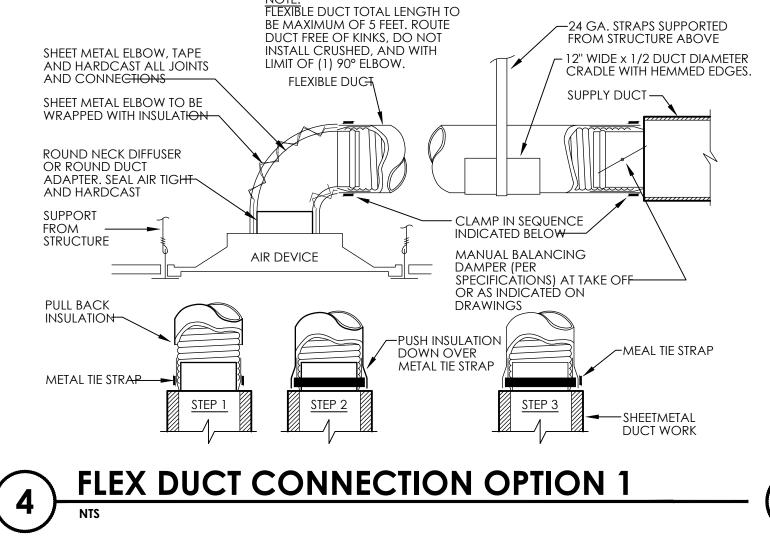
VERTICAL PIPE SEGMENTS

CLEAR OF COIL PULL REGION


- 1" FLANGE & HEM


BOLT ON 4" CENTERS

1"x1/8" BAND IRON


FLEXIBLE MATERIAL AS

RECTANGULAR FLEXIBLE CONNECTION

FLEXIBLE DUCT TOTAL LENGTH TO BE MAXIMUM OF 5 FEET. ROUTE

— CLAMP IN SEQUENCE

INDICATED BELOW

-PUSH INSULATION

DOWN OVER

- MANUAL BALANCING

SPECIFICATIONS) AT TAKE

OFF OR AS INDIĆATED ON

DAMPER (PER

DRAWINGS

-METAL TIE

---SHEETMETAL **DUCT WORK**

DUCT FREE OF KINKS, DO NOT

INSTALL CRUSHED, AND WITH

LIMIT OF (1) 90° ELBOW.

→ METAL TIE AS

INDICATED

FLEX DUCT CONNECTION OPTION 2

AIR DEVICE

SHEET METAL DUCT SIZE AND

45 DEGREE SHEET METAL ELBOW, TAPE AND HARDCAST ALL JOINTS AND CONNECTIONS

GAUGE AS INDICATED ON

DRAWINGS AND IN -

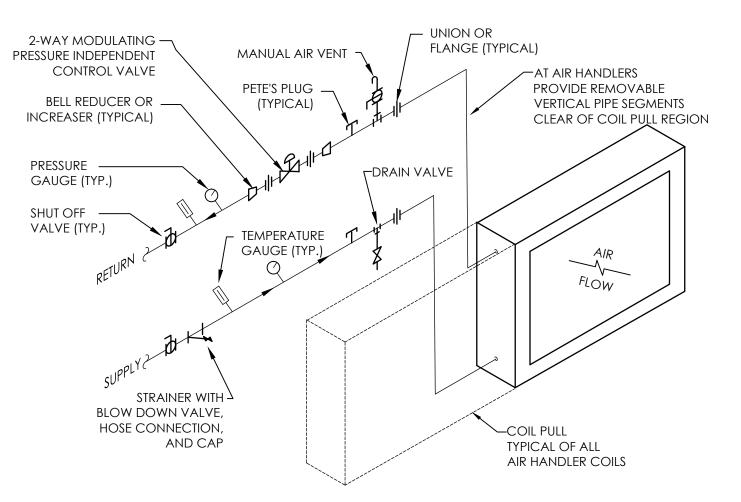
SPECIFICATIONS

FLEXIBLE DUCT ——

ROUND NECK DIFFUSER OR

ROUND DUCT ADAPTER.

SEAL AIR TIGHT AND


HARDCAST

SUPPORT TO

INSULATION -

METAL TIE STRAP -

STRUCTURE ---

- SEE HVAC PIPING LAYOUT FOR RUNOUT SIZES. PIPING SHALL BE LINE SIZE, NOT CONNECTION SIZE (CONTROL VALVE EXEMPT). FINAL SIZE REDUCTION SHALL OCCUR AT THE UNIT'S POINT OF CONNECTION.
- 2. SUPPORT PIPING AT VALVES AND COIL CONNECTIONS. 3. SEE DETAIL ON M5.2 FOR ADDITIONAL REQUIREMENTS FOR AIR HANDLING UNITS WITH
- TWO-WAY COIL CONNECTION

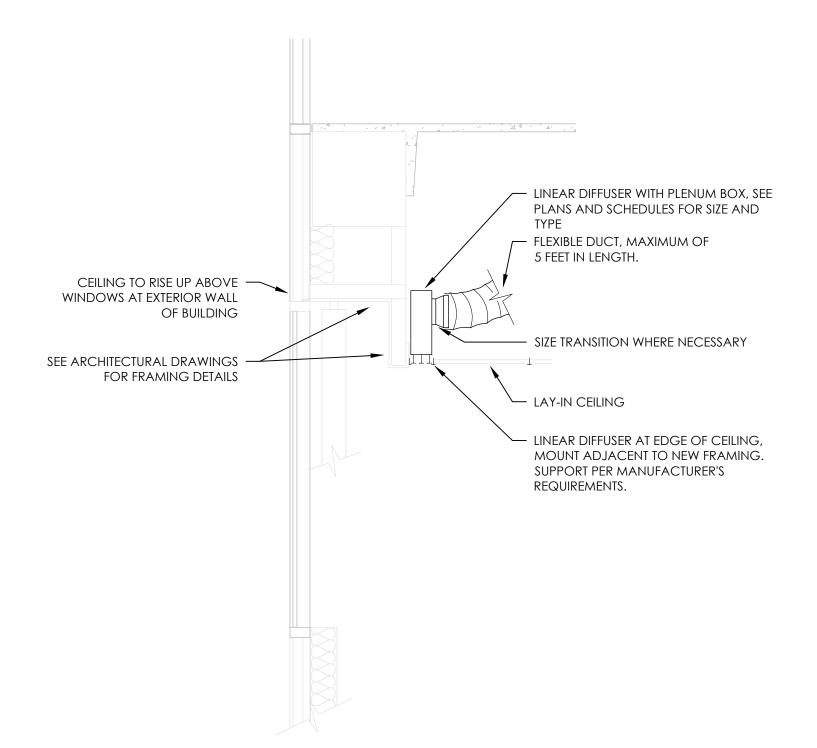
2. SUPPORT PIPING AT VALVES AND COIL CONNECTIONS.

THE UNIT'S POINT OF CONNECTION.

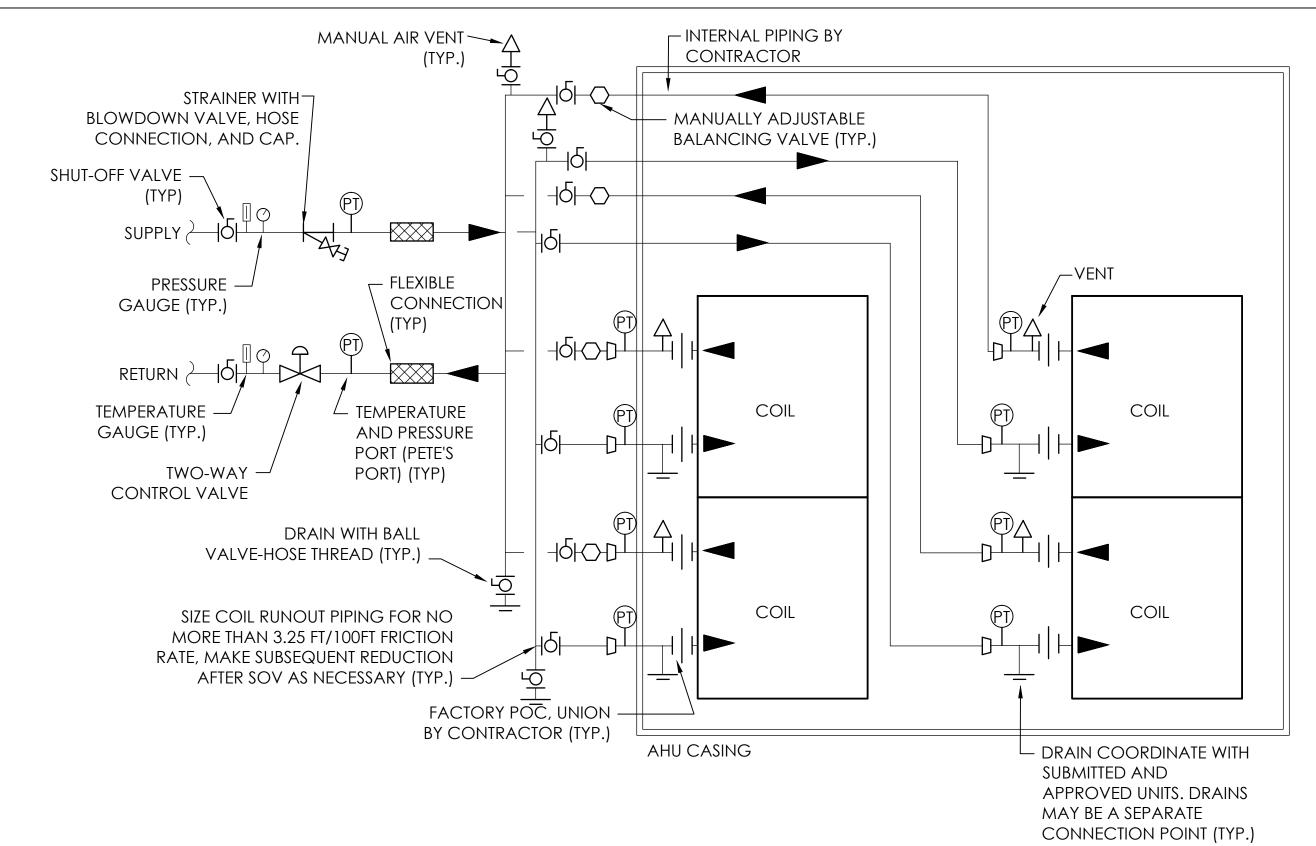
MANUAL AIR VENT

PETE'S PLUG _

(TYPICAL)


SEE HVAC PIPING LAYOUT FOR RUNOUT SIZES. PIPING SHALL BE LINE SIZE, NOT

3. SEE DETAIL ON M5.2 FOR ADDITIONAL REQUIREMENTS FOR AIR HANDLING UNITS WITH


ARCHITECTS & ENGINEERS, INC

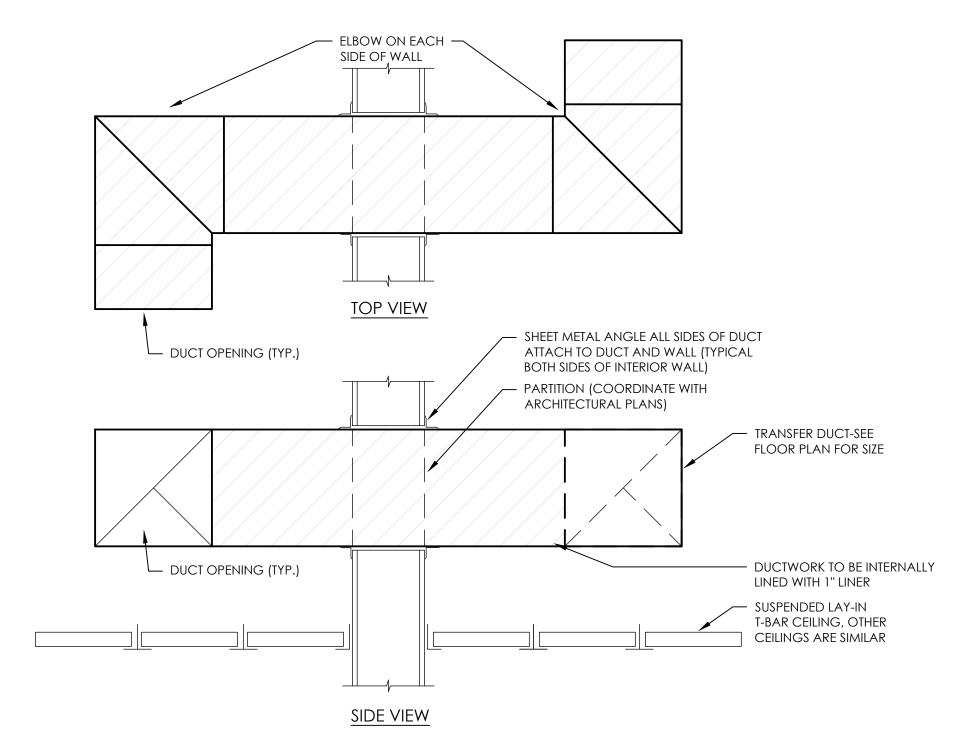
2939 E. Broadway Blvd, Tucson, AZ 85716 T 520.881.4546 F 520.795.1822 GLHN.com

LINEAR DIFFUSER DETAIL

ABOVE CEILING TRANSFER DUCT AT NON-RATED, FULL HEIGHT PARTITIONS

1. ALL TEST PORTS, AIR VENTS, DRAIN VALVES, AND PIPING WITHIN THE UNIT CASING IS SPECIFIED TO BE PROVIDED BY

CONTRACTOR.


INDIVIDUAL COIL RUNOUTS SHALL BE SIMILAR AMONG ALL COILS TO PROVIDE A CONSISTENT PRESSURE DROP FROM THE HEADER.

SEAL ANY FIELD CASING PENETRATIONS TO MINIMIZE TOTAL AHU AIR LEAKAGE. SEE SPECIFICATIONS FOR REQUIRED AHU AIR LEAKAGE

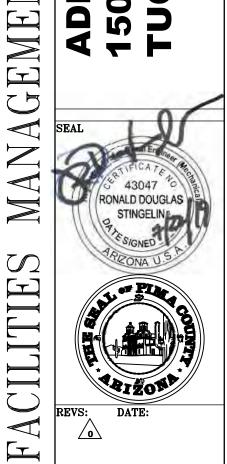
4. DIAGRAM REPRESENTS A CONFIGURATION. SEE LAYOUT DRAWINGS FOR AND UNIQUE SITUATIONS.

TYPICAL MULTI-COIL ARRAY CONTROL DIAGRAMS AND ADDITIONAL COMPONENTS

AHU WITH MULTIPLE COIL CONNECTIONS PIPING ARRANGEMENT

T 520.881.4546 F 520.795.1822 GLHN.com

ADMIN WEST I ARIZONA NOS \bigcirc \prod DING NGRESS BUIL


3085

 \forall

OR

FIFT FLOC DETAILS

10 L ADMII 150 W

DRWN BY: AG CKD BY: JMZ DATE: 2019/07/22 SCALE: NTS SHEET NO:

19*10427

 \forall

SON

MAN

FACILITIE

DRWN BY: AG

SCALE: NTS

CKD BY: **JMZ**

SHEET NO:

DATE: 2019/07/22

W.O. NUMBER

19*10427

DSP SET POINT 55 °F (ADJ) 75 °F (ADJ)

THE BAS SHALL ALLOW USERS TO REMOVE INDIVIDUAL TUS FROM THIS RESET LOGIC.

THE AHU HEATING AND COOLING SIGNALS SHALL BE COMPARED TO PREVENT

SIMULTANEOUS HEATING AND COOLING AT THE AHU LEVEL.

3. DAMPER CONTROL

AVG VALVE POSITION

25% (ADJ)

80% (ADJ)

AIR HANDLING UNIT (AHU) SEQUENCE OF OPERATION

FAN OPERATION

SPEED.

CONTRACTOR.

20% (ADJ)

70% (ADJ)

LOGIC.

AVG DAMPER POSITION

AN ALARM CONDITION TO THE BAS.

COOLING AND HEATING COILS

SYSTEM ARE PRESENT.

AHU-5A & 5B SHALL OPERATE PER EXISTING COUNTY PROGRAMMING.

THE SUPPLY FANS (SFs) SHALL OPERATE CONTINUOUSLY DURING ALL OCCUPIED

HOURS. DURING UNOCCUPIED HOURS, THE SUPPLY FAN SHALL MODULATE ON

THE SF VFD'S SHALL MODULATE TO MAINTAIN A USER ADJUSTABLE DISCHARGE

STATIC PRESSURE (DSP) SET POINT. EACH STATIC PRESSURE SENSOR SHALL HAVE

A UNIQUE, INDEPENDENT SET POINT. EACH AHU SHALL USE LOW SELECT LOGIC

POSITIONS ASSOCIATED WITH EACH AIR HANDLER. THIS AVERAGE VALUE SHALL

(ACTUAL VS. SET POINT) ON ITS ASSOCIATED SENSORS TO MODULATE FAN

EACH DSP SET POINT SHALL BE RESET BASED ON ACTUAL BLDG DEMAND

REQUIREMENTS. THE BAS SHALL MONITOR AND AVERAGE ALL TU DAMPER

BE USED TO LINEARLY RESET THE DSP. EACH SENSOR SHALL HAVE ITS OWN

UNIQUE RESET SCHEDULE. ALL RESET SCHEDULES SHALL BE INITIALLY SET AS

INDICATED BELOW. FINAL SETTINGS SHALL BE AS RECOMMENDED BY THE TAB

DSP SET POINT

0.8" WC (ADJ)

1.2" WC (ADJ)

FOR SYSTEMS WITH MULTIPLE STATIC PRESSURE SENSORS, EACH SENSOR SHALL

THE BAS SHALL ALLOW USERS TO REMOVE INDIVIDUAL TUS FROM THIS RESET

THE DISCHARGE AIR PRESSURE HIGH LIMIT ALARM SHALL BE USER ADJUSTABLE

CONTACT SHALL OPEN AND SHUT OFF THE FAN. THIS CONDITION SHALL REPORT

MAINTAIN A DISCHARGE AIR TEMP (DAT) SET POINT. THE DAT SET POINT SHALL

BE RESET BASED ON ACTUAL BLDG DEMAND REQUIREMENTS. THE BAS SHALL

ASSOCIATED WITH EACH AIR HANDLER. THIS AVERAGE VALUE SHALL BE USED

TO LINEARLY RESET THE DAT. EACH SYSTEM SHALL HAVE ITS OWN UNIQUE RESET SCHEDULE. ALL RESET SCHEDULES SHALL BE INITIALLY SET AS INDICATED BELOW.

HAVE AN INDEPENDENT, USER ADJUSTABLE SET POINT RESET SCHEDULE.

AND INITIALLY SET AT 4.5" WG. UPON ALARM, THE NORMALLY CLOSED

THE AHU CHILLED AND HEATING WATER VALVES SHALL MODULATE TO

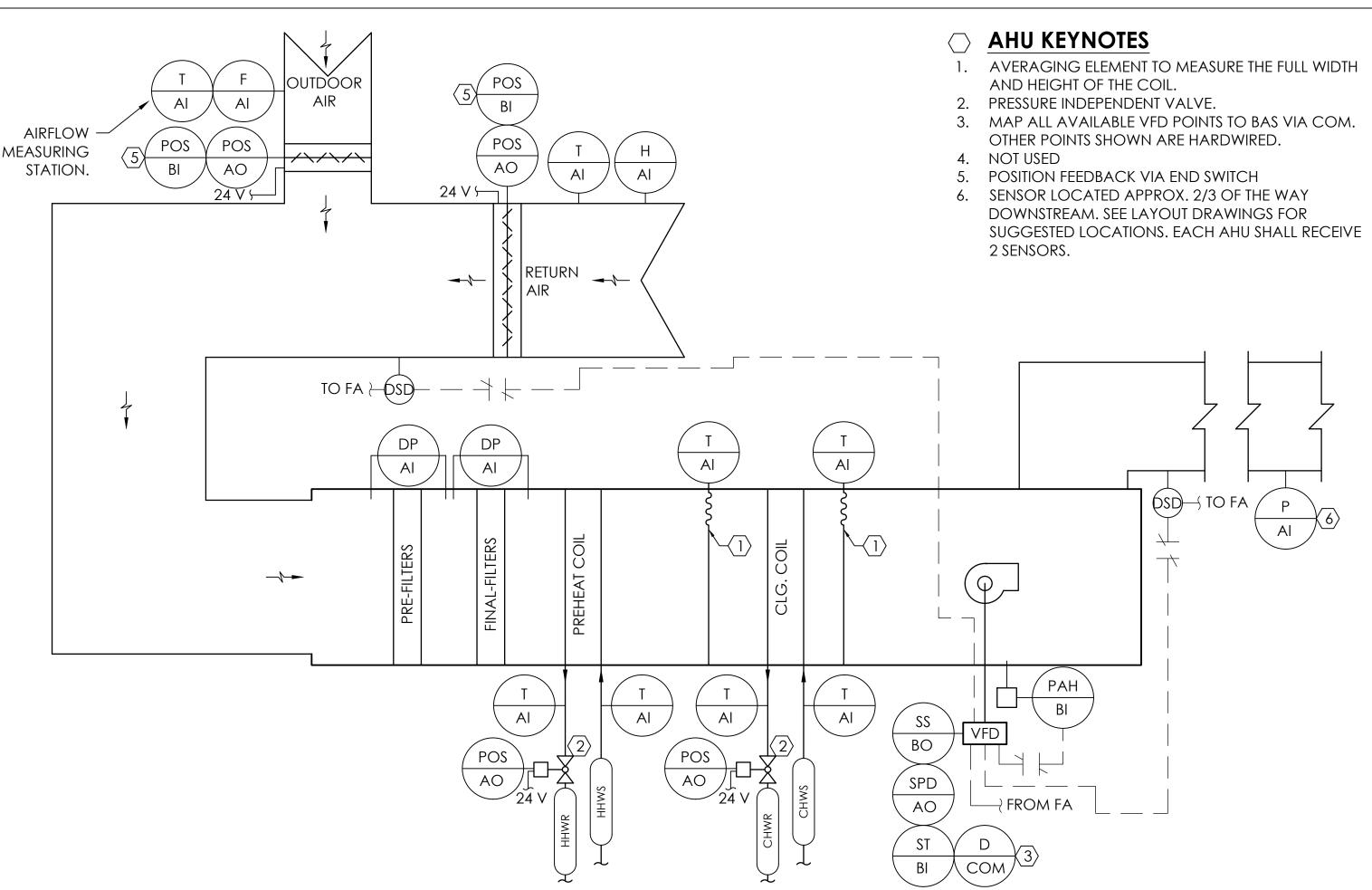
MONITOR AND AVERAGE ALL TU REHEAT (RH) COIL VALVE POSITIONS

WHENEVER ANY TU EXPERIENCES A COOLING OR HEATING DEMAND. THE

SUPPLY FAN SHALL MODULATE OFF WHEN NO THERMAL DEMAND ON THAT

THE OA AND RETURN AIR (RA) DAMPERS WILL MODULATE TO MAINTAIN THE MINIMUM OA FLOW RATE (ADJ) AS REPORTED BY THE AIR FLOW MEASURING STATION. THIS FLOW RATE IS TO REMAIN CONSTANT DURING ALL OCCUPIED HOURS.

DAMPER CONTROL SHALL START WITH THE RA DAMPER FULLY OPEN AND THE OA DAMPER MODULATING TO MAINTAIN SET POINT. IF THE OA DAMPER IS FULL OPEN AND THE SET POINT CANNOT BE ATTAINED FOR A PERIOD OF 5 MINUTES (ADJ), THE RA DAMPER SHALL BEGIN TO SHUT UNTIL THE SET POINT IS REACHED. THE RA DAMPER SHALL NOT BE ALLOWED TO CLOSE BEYOND 50% OPEN (ADJ). IF THE OA DAMPER IS FULLY OPEN, THE RA DAMPER AT MINIMUM POSITION, AND THE SET POINT IS NOT ATTAINED FOR A PERIOD OF 10 MINUTES (ADJ), AN ALARM SHALL BE GENERATED IN THE BAS.


THE AUTOMATIC OA CONTROL DAMPER SHALL FULL SHUT WHEN THE AIR HANDLER IS IN THE UNOCCUPIED MODE PER IECC REQUIREMENTS.

4. FIRE ALARM INTERFACE

UPON SIGNAL FROM THE BUILDING FIRE ALARM, THE FAN SHALL SHUT DOWN VIA A NORMALLY CLOSED CONTACT WIRED TO THE VFD. UPON DETECTION BY EITHER AHU DUCT SMOKE DETECTOR, THE FAN SHALL SHUT DOWN VIA A NORMALLY CLOSED CONTACT WIRED TO THE VFD.

OCCUPANCY SCHEDULE NOTES

OCCUPANCY SHALL PER THE EXISTING PIMA COUNTY CENTRAL PLANT PROGRAMMING.

AHU CONTROL DIAGRAM

Αl

24V FROM BAS⊱ PANEL BY **CONTROLS** POS CONTRACTOR AO (COM) Αl Αl **SUPPLY** AIR TO **—**/-SPACE AO

HHWR HHWS HEATING ROOM TEMPERATURE (DEG. F) →

TERMINAL UNIT SEQUENCE OF OPERATIONS USER ADJUSTABLE SET POINTS SHALL BE INITIALLY SET AS FOLLOWS:

> OCCUPIED UNOCCUPIED COOLING 75°F (ADJ) COOLING 85°F (ADJ) HEATING 68°F (ADJ) HEATING 55°F (ADJ)

DURING OCCUPIED HOURS, THE TU SHALL PROVIDE CONTINUOUS AIR TO THE SPACE(S) THAT IS NO LESS THAN THE SCHEDULED MINIMUM TO ENSURE THAT MINIMUM VENTILATION AIR RATES ARE ATTAINED.

COOLING AIRFLOW SHALL INCREASE AND DECREASE BASED ON THERMAL LOAD OF THE SPACE(S).

REHEAT SHALL OCCUR WHILE THE TU IS AT THE MINIMUM SCHEDULED AIRFLOW. THE REHEAT COIL VALVE SHALL MODULATE BASED ON THERMAL LOAD.

THE SYSTEM SHALL MAINTAIN SET POINT + 1° F (ADJUSTABLE).

ALL TERMINAL UNIT THERMOSTATS SHALL INCLUDE AN OCCUPANCY OVERRIDE BUTTON THAT WILL SET ITS RESPECTIVE AIR HANDLER INTO THE OCCUPIED MODE FOR A DURATION TERMINAL UNIT CONTROL DIAGRAM OF 1 HOUR (ADJUSTABLE).

TERMINAL UNITS WITH 3-WAY VALVES

1. PROVIDE 3-WAY REHEAT CONTROL VALVES ON THE FOLLOWING TERMINAL UNIT TO ENSURE BRANCH CIRCULATION. PROVIDE WITH CIRCUIT SETTER IN THE BYPASS SET AT 0.5 GPM. COORDINATE WITH LAYOUT DRAWINGS

• 515A, 517A, 507B

TERMINAL UNITS WITH COMMON THERMOSTATS

 THE FOLLOWING SETS OF TERMINAL UNITS SHALL RECEIVE A COMMON SET POINT FROM A SINGLE THERMOSTAT.

TU-506A, TU-507A TU-502B, TU-513B TU-510B, 511B, AND 512B

TU KEYNOTES

ROOM TEMPERATURE SENSOR W/ PROGRAMMABLE WARM/COOL ADJUSTER, OCCUPANCY OVERRIDE, AND COMM PORT.

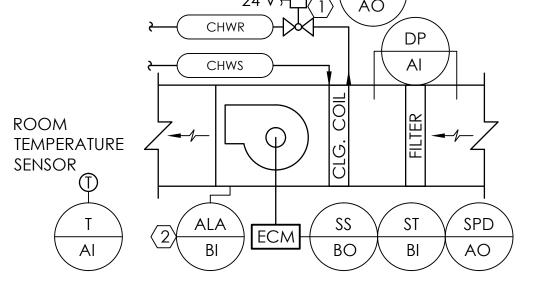
2. PRESSURE INDEPENDENT VALVE. (3-WAYS EXEMPT)

3. 2-WAY VALVE SHOWN. SEE LAYOUT DRAWINGS FOR LOCATIONS OF 3-WAY CONTROL VALVES.

FAN COIL UNIT SEQUENCE OF OPERATIONS

USER ADJUSTABLE SET POINTS SHALL BE INITIALLY SET AS FOLLOWS BASED ON THE BUILDING OCCUPANCY SCHEDULE:

OCCUPIED UNOCCUPIED


- ENERGIZE AND THE COOLING COIL VALVE WILL MODULATE TO MAINTAIN SET POINT + 3° F (ADJUSTABLE).
- 4. DURING UNOCCUPIED HOURS, THE FAN SHALL CYCLE ON/OFF BASED ON THERMAL LOAD.

FCU KEYNOTES

PRESSURE INDEPENDENT VALVE. 2. COIL CONDENSATE OVERFLOW ALARM PER IMC

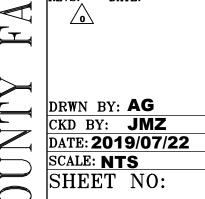
ARCHITECTS & ENGINEERS, INC 2939 E. Broadway Blvd, Tucson, AZ 85716

T 520.881.4546 F 520.795.1822 GLHN.com

FCU CONTROL DIAGRAM

COOLING 80°F (ADJ) COOLING 85°F (ADJ)

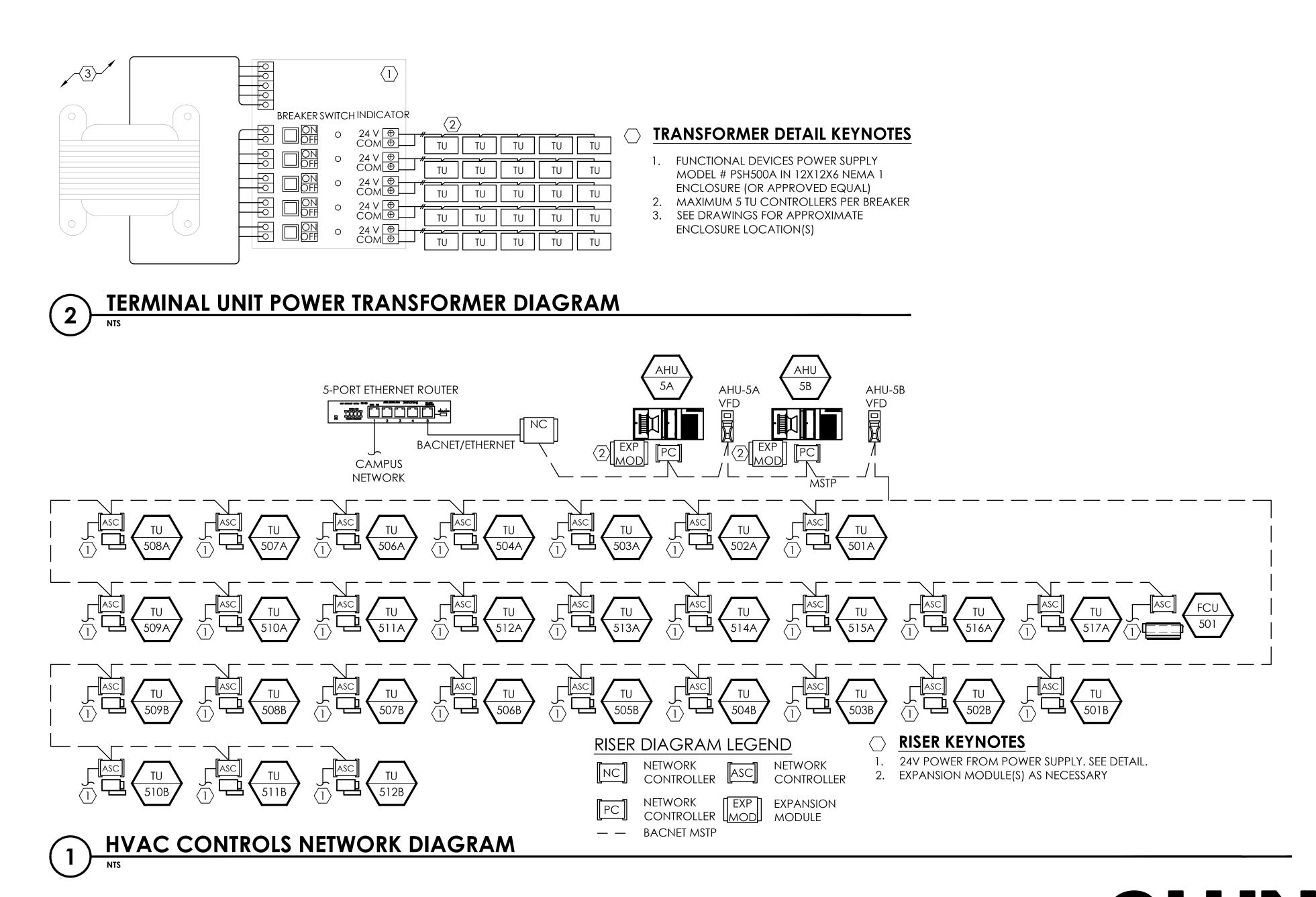
UPON A RISE IN SPACE TEMPERATURE THE FAN WILL


DURING OCCUPIED HOURS, THE FAN SHALL RUN CONTINUOUSLY.

 \blacksquare

520

ARIZONA


TUCSON

19*10427

ARCHITECTS & ENGINEERS, INC

2939 E. Broadway Blvd, Tucson, AZ 85716

DRWN BY: AG
CKD BY: JMZ
DATE: 2019/07/22
SCALE: NTS
SHEET NO:

19*10427

								AIR I	HANDLIN	G UNIT S	CHEDULE							
, 		AREA			AIR FLOW			SUPPLY	RETURN OR	EXHAUST	PREFILTER	AFTER	FINAL	HEAT	PREHEAT	COOLING	REHEAT	
MARK	LOCATION	AND/OR BLDG	AIR FLOW	SUPPLY	MINOA	RETURN	ESP	FAN MARK	RELIEFFAN	FAN MARK	MARK	FILTER	FILTER	RECOVERY	COIL	COIL	COIL	REMARKS
		SERVED		CFM	CFM	CFM		IANMARK	MARK	TANMAKK	MAKK	MARK	MARK	MARK	MARK	MARK	MARK	
AHU-5A	LEVEL 5	LEVEL 5 WEST	VARIABLE	10,200	1,350	8,850	2.75	SF5A	NONE	NONE	PF-5A	NONE	FF-5A	NONE	PHC-5A	CC-5A	NONE	BASIS OF DESIGN = TRANE CSIA021
AHU-5B	LEVEL 5	LEVEL 5 EAST	VARIABLE	9,000	1,470	7,530	2.75	SF5B	NONE	NONE	PF-5B	NONE	FF-5B	NONE	PHC-5B	CC-5B	NONE	BASIS OF DESIGN = TRANE CSIA021
NOTES:	1. SIZE UNITS FOR	2600 FT. ELEVATION	1	2. INCLUDE FA	CTORY PROVI	DED VFD AND N	MOTOR SHAFT	GROUNDING B	BRUSHES	3. AIR HANDL	er sections to b	E SIZED TO FIT IN	V EXISTING ELE	vators, stairwei	ls, &/or win	dows. field ve	RIFY PRIOR TO	D SUBMITTING.

FAN SCHEDULE AREA OVETEN MAY ALP FAN SCHEDULE																						
		system	MAXAIR	TCD				FAN								MOT	OR ELECT	RICAL				
CATION		AND/OR	FLOW	125	TVDE)A/LIEE	22 4 12	ARRANGEMENT,		STATIC	DRIVE	EANLDDAA			POWER			DUASE	VOLT	DDM	SPEED	REMARKS
	SERVED	SERVICE	CFM	IN	1175	VVNEEL	CLA33	DISCHARGE	IN	EFF.	DRIVE	FAN RPM	ВНР	HP	FLA	MCA	PF	PHASE	VOLI	KP/VI	CONTROL	
EVEL 5	LEVEL 5 WEST	AHU-5A	10,200	4.4	PLENUM	AIRFOIL	II	VERT. DISCHARGE	2@ 18.25	60	DIRECT	2488	11.8	2 @ 7.5	21.00	26.25	0.79	3	480	1,800	VARIABLE	
EVEL 5	LEVEL 5 EAST	AHU-5B	9,000	4.69	PLENUM	AIRFOIL	II	VERT. DISCHARGE	2@ 16.5	64	DIRECT	3006	10.3	2 @ 7.5	21.00	26.25	0.80	3	480	1,800	VARIABLE	
	I		1								1	<u> </u>			<u> </u>				<u> </u>			
E'	VEL 5	ATION AND/OR BLDG SERVED VEL 5 LEVEL 5 WEST	ATION AND/OR AND/OR SERVICE VEL 5 LEVEL 5 WEST AHU-5A	ATION AND/OR AND/OR SERVICE SERVED SERVICE CFM VEL 5 LEVEL 5 WEST AHU-5A 10,200	ATION AND/OR BLDG SERVICE CFM IN VEL 5 LEVEL 5 WEST AHU-5A 10,200 4.4	ATION AND/OR BLDG SERVICE SERVICE CFM IN VEL 5 LEVEL 5 WEST AHU-5A 10,200 4.4 PLENUM	ATION AND/OR STSTEM AND/OR SERVICE TSP SERVED SERVICE CFM IN VEL 5 LEVEL 5 WEST AHU-5A 10,200 4.4 PLENUM AIRFOIL	ATION AND/OR SERVICE SERVICE TSP SERVED SERVICE CFM IN VEL 5 LEVEL 5 WEST AHU-5A 10,200 4.4 PLENUM AIRFOIL II	ATION AND/OR BLDG SERVICE CFM IN TYPE WHEEL CLASS ROTATION, AND DISCHARGE VEL 5 LEVEL 5 WEST AHU-5A 10,200 4.4 PLENUM AIRFOIL II VERT. DISCHARGE	ATION AREA AND/OR BLDG SERVICE CFM IN TYPE WHEEL CLASS ROTATION, AND DISCHARGE IN VEL 5 LEVEL 5 WEST AHU-5A 10,200 4.4 PLENUM AIRFOIL II VERT. DISCHARGE 2@ 18.25	ATION AREA AND/OR BLDG SERVICE CFM IN TYPE WHEEL CLASS ROTATION, AND DISCHARGE IN VERT. DISCHARGE 2@ 18.25 60	ATION AND/OR AND/OR SERVICE SERVICE SERVICE TYPE WHEEL CLASS FAN TYPE WHEEL CLASS ROTATION, AND DISCHARGE IN VERT. DISCHARGE 2@ 18.25 60 DIRECT	ATION AND/OR AND/OR SERVICE SERVICE TYPE WHEEL CLASS ARRANGEMENT, ROTATION, AND DISCHARGE IN STATIC EFF. TYPE WHEEL CLASS ARRANGEMENT, ROTATION, AND DISCHARGE VEL 5 LEVEL 5 WEST AHU-5A 10,200 4.4 PLENUM AIRFOIL II VERT. DISCHARGE 2@ 18.25 60 DIRECT 2488	ATION AND/OR AND/OR SERVICE	ATION AREA AND/OR BLDG SERVICE TYPE WHEEL CLASS ARRANGEMENT, ROTATION, AND DISCHARGE IN FAN RPM BHP HP VEL 5 LEVEL 5 WEST AHU-5A 10,200 4.4 PLENUM AIRFOIL II VERT. DISCHARGE 2@ 18.25 60 DIRECT 2488 11.8 2 @ 7.5	ATION AREA AND/OR BLDG SERVICE CFM IN TYPE WHEEL CLASS ROTATION, AND DISCHARGE IN VERT. DISCHARGE 2@ 18.25 60 DIRECT 2488 11.8 2 @ 7.5 21.00	ATION AND/OR AND/OR SERVICE	ATION AND/OR SERVICE S	ATION AND/OR SERVICE S	ATION AND/OR AND/OR SERVICE SERVICE TEVEL 5 WEST AHU-5A 10,200 4.4 PLENUM AIRFOIL II VERT. DISCHARGE 2@ 18.25 60 DIRECT 2488 11.8 2 @ 7.5 21.00 26.25 0.79 3 480	ATION AND/OR BLDG SERVICE TYPE WHEEL CLASS TYPE WHEEL CLASS TO DISCHARGE TO DISCHAR	ATION AREA AND/OR BLDG SERVICE FLOW TSP FLOW TSP FLOW TSP TYPE WHEEL CLASS ARRANGEMENT, ROTATION, AND DISCHARGE IN VEL 5 LEVEL 5 WEST AHU-5A 10,200 4.4 PLENUM AIRFOIL II VERT. DISCHARGE 2@ 18.25 60 DIRECT 2488 11.8 2.@ 7.5 21.00 26.25 0.79 3 480 1,800 VARIABLE

4. MAXIMUM OPERATING FLOOR LOADING NOT TO EXCEED 60 LBS/FT² OVER ENTIRE AHU FOOTPRINT 5. SIZE UNIT BASE TO ACCOMMODATE P-TRAP HEIGHT

1. VALUES SHOWN ARE FOR THE DEHUMDIFICATION DESIGN CONDITION (MOST STRINGENT)

							CHILLED	WAT	ER C	DOLIN	1G CC	DIL SCH	EDULE						
		AREA	SYSTEM	SUPPLY	MAXFACE	MAXAPD		E/	¥T	L/	4 T	TOTAL	SENSIBLE	LATENT		CHILLE	ED WA	ER	
MARK	LOCATION	AND/OR	AND/OR	AIR FLOW	VELOCITY	MAXAID	CONDITION	Db	Wb	Db	Wb	CLG.	CLG.	CLG.	FLOW	EWT	LWT	MAX WPD	REMARKS
		BLDG	SERVICE	CFM	FPM	IN WG		°F	°F	°F	°F	MBH	MBH	MBH	GPM	°F	٥F	FT	
CC-5A	LEVEL 5	LEVEL 5 WEST	AHU-5A	10,200	500	0.85	0.4% SENSIBLE	81.6	64.8	55.0	54.0	315.8	269.3	46.5	63.2	45.0	55.0	6.0	SEE DRAWINGS FOR CONNECTION SIDE
CC-SA	LEVEL J	LEVEL D WEST	Anu-3A	10,200	300	0.65	0.4% DEHUMID.	77.8	65.5	53.0	52.0	392.0	250.4	141.6	78.4	45.0	55.0	9.0	SEE DRAWINGS FOR CONNECTION SIDE
CC-5B	LEVEL 5	LEVEL 5 EAST	AHU-5B	9,000	500	0.85	0.4% SENSIBLE	82.5	64.8	55.0	54.0	277.2	243.2	34.0	55.4	45.0	55.0	4.5	SEE DRAWINGS FOR CONNECTION SIDE
CC-36	LLVELS	CEACE 2 EASI	AHU-36	7,000	300	0.65	0.4% DEHUMID.	77.7	65.7	53.0	52.0	349.1	218.3	130.7	69.8	45.0	55.0	7.0	SEE DRAWINGS FOR CONNECTION SIDE

																	4
						F	 EATING	WATER	COIL SC	HEDULE							
		AREA	SYSTEM		AIR FLOW	MAXFACE	MAXAPD	TEMPER	RATURES	TOTAL		HOT V	VATER		07		
MARK	LOCATION	AND/OR	AND/OR	APPLICATION	AIR FLOW	VELOCITY	MAXAPD	EAT	LAT	MIN	FLOW	EWT	LWT	MAX WPD	GLYCOL	REMARKS	
		BLDG	SERVICE		CFM	FPM	IN WG	٥F	٥F	MBH	GPM	٥F	약	FT	GLICOL		
PHC-5A	LEVEL 5	LEVEL 5 WEST	AHU-5A	PREHEAT	10,200	525	0.1	63	80	168	16.8	170	150	1.0	0	SEE DRAWINGS FOR CONNECTION SIDE	
PHC-5B	LEVEL 5	LEVEL 5 EAST	AHU-5B	PREHEAT	9,000	525	0.1	62	80	158	15.8	170	150	1.0	0	SEE DRAWINGS FOR CONNECTION SIDE	

,,	(2)12)(1	7,000	020	0.1	02	00	100	10.0	,,,	100	, , , , ,	, ,	SIDE
						AIR	FILTER S	CHEDULI	 <u>=</u>				
				SYSTEM	MINIMUM		А	PD			CARTE	RIDGES	
MARK	LOCATIO	AREA AND BLDG SERV	O/OR /	and/or service	MERV RATING	AIR FLOW	INITIAL	CHANGE- OVER	HOUSING TYPE	QTY.	THICKNESS	ARRANGEMENT	REMARKS
					,,,,,,,,,	CFM	IN	IN			IN		
PF-5A	LEVEL 5	LEVEL 5 WE	EST	AHU-5A	8	10,200	0.27	1	SIDE	6	2		
PF-5B	LE∀EL 5	LEVEL 5 EA	AST	AHU-5B	8	9,000	0.27	1	SIDE	6	2		
FF-5A	LEVEL 5	LEVEL 5 WE	E\$T	AHU-5A	15	10,200	0.32	1.5	ŞIDE	6	12		
FF-5B	LEVEL 5	LEVEL 5 EA	AST	AHU-5B	15	9,000	0.32	1.5	SIDE	6	12		

6. PROVIDE WITH BACKDRAFT DAMPER AT EACH FAN.

								ı															<u> </u>			
							Α	IR HA	NDLI	NG L	JNIT S	SOUN	ID PC	OWER	LEVI	ELS										
				SOUND	POWER L	EVELS OL	JTLET (dB I	RE: 10E-12	2 WAΠS)			SOUND	POWER	LEVELS IN	LET (dB R	E: 10E-12	WATTS)		SOUN	ID POWE	R LEVELS	CASING	RADIATE) (dB RE:	10E-12 W	ATTS)
MARK	LOCATION	AREA SERVED	1	2	3	4	5	6	7	8	J	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8
	63 HZ 125 HZ 250 HZ 500 HZ 1 KHZ 2 KHZ 4 KHZ 8 KHZ 63 HZ 125 HZ 250 HZ 500 HZ 1 KHZ 2 KHZ 4 KHZ 8 KHZ 63 HZ 125 HZ 250 HZ 500 HZ 1 KHZ 2 KHZ 4 KHZ 8 KHZ																									
AHU-5A	LEVEL 5	LEVEL 5 WEST	88	83	85	91	84	85	80	71	80	79	79	84	72	74	67	58	83	80	78	81	78	67	53	40
AHU-5B	LEVEL 5	LEVEL 5 EAST	87	84	87	93	86	84	82	74	77	79	80	82	74	73	69	59	82	80	79	83	79	61	53	43
NOTES:	1. SOUND POWE	R LEVEL MEASUREME	nts in ac	CCORDA	NCE WITI	H AMCAS	STANDARI	300.		2. VALUE	s shown	I FOR UN	IT OPERA	TING AT D	EHUMIDII	FICATION	DESIGN F	POINTS.								

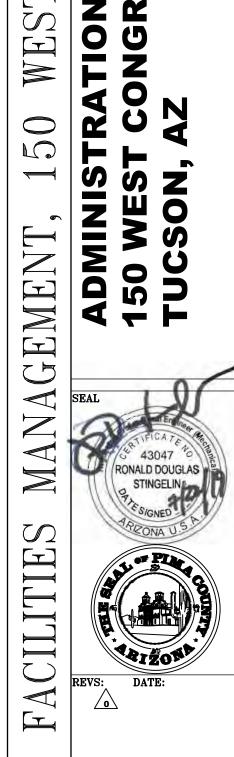
ALL SELECTIONS SHALL BE MADE AT AN ALTITUDE OF 2,600 FT.

						COOLI	NG ONL	YTW	O PI	PE FA	AN C	OIL	: TINL	SCHED	ULE					
			TOTAL	OA		COOL	ING REQUIR	EMEN	TS	CIRC	CULATI	NG WA	ATER			F	ANMO	TOR		
MARK	LOCATION	SED//ICE	AIR	FLOW	ESP	MIN	MIN SENS.	E	ΑT	FLOW	EWT	LWT	MAX	FILTER					SPEED	REMARKS
MAKK	LOCATION	SERVICE	FLOW	PLOVV		TOTAL	CAPACITY	Db	Wb		[[[]	LVVI	WPD		WATTS	PHASE	VOLT	RPM	CONTROL	KEMIAKKS
			CFM	CFM	IN WG	BTUH	BTUH	약	٩F	GPM	٥F	٩F	FT	MERV					CONTROL	
FCU-501																				
NOTE	1. SIZE UNITS FO	OR 2600 FT. EL	.EVATION	2. PROVIDE	WITH MOT	OR SPEED CO	NTROLLER WITH	DIAL A	DJUSTMEN	1 T.										

					AIR [)FVIC	CE SCH	FDULF	(SUPPL	Υ)
	TVDF	MAX FLOW	MAX PRESS		NECK SIZE	MAX.				,
MARK	TYPE	1.077	DROP	MOUNTING	INCHES	NC	DAMPER	FINISH	THROW	REMARKS
		CFM	IN WC							
SD-1	FULLY LOUVERED FACE, CONE STYLE	115	0.08	LAY-IN	6" Ø	20	OBD	WHITE	4 WAY	PRICE SERIES SCDA, ADJUSTABLE THROW, 4 CONE, 24"x 24" FULLY LOUVERED WITH FRAME FOR T-BAR INSTALLATION, AND ROUND NECK
SD-2	FULLY LOUVERED	185	0.08	LAY-IN	8" Ø	20	OBD	WHITE	4 WAY	PRICE SERIES SCDA, ADJUSTABLE THROW, 4 CONE, 24"x 24" FULLY
SD-3	FACE, CONE STYLE FULLY LOUVERED	280	0.08	LAY-IN	10" Ø	20	OBD	WHITE	4 WAY	PRICE SERIES SCDA, ADJUSTABLE THROW, 4 CONE, 24"x 24" FULLY
SD-4	FACE, CONE STYLE FULLY LOUVERED	365	0.08	LAY-IN	12" Ø	20	OBD	WHITE	4 WAY	LOUVERED WITH FRAME FOR T-BAR INSTALLATION, AND ROUND NECK PRICE SERIES SCDA, ADJUSTABLE THROW, 4 CONE, 24"x 24" FULLY
	FACE, CONE STYLE FULLY LOUVERED			LAT-IN		20		771111	4 ((A)	LOUVERED WITH FRAME FOR T-BAR INSTALLATION, AND ROUND NECK PRICE SERIES SCDA, ADJUSTABLE THROW, 4 CONE, 24"x 24" FULLY
SD-5	FACE, CONE STYLE	480	0.08	LAY-IN	14" Ø	20	OBD	WHITE	4 WAY	LOUVERED WITH FRAME FOR T-BAR INSTALLATION, AND ROUND NECK
SG-1	SIDEWALL, ADJUSTABLE	210	0.08	SIDEWALL	8X6	20	OBD	WHITE	ADJUSTABLE	PRICE SERIES 22 WITH DOUBLE DEFLECTION FACE, HORIZONTAL FRONT WITH VERTICAL REAR, AND FLAT FRAME FOR SURFACE MOUNTING
SG-2	SIDEWALL, ADJUSTABLE	320	0.08	SIDEWALL	10X8	20	OBD	WHITE	AD IUSTABLE	PRICE SERIES 22 WITH DOUBLE DEFLECTION FACE HORIZONTAL EPONT
\$G-3	SIDEWALL,	485	0.08	SIDEWALL	20X6	20	OBD	WHITE	ADJUSTABLE	PRICE SERIES 22 WITH DOUBLE DEFLECTION FACE, HORIZONTAL FRONT
SG-4	ADJUSTABLE SIDEWALL,	145	0.08	HARDLID	6x6	20	OBD	WHITE	ADJUSTABLE	WITH VERTICAL REAR, AND FLAT FRAME FOR SURFACE MOUNTING PRICE SERIES 22 WITH DOUBLE DEFLECTION FACE, HORIZONTAL FRONT
	ADJUSTABLE		0.55	1.7,11.00.0	00					WITH VERTICAL REAR, AND FLAT FRAME FOR SURFACE MOUNTING

						AIR DI	EVICE S	CHEDULE	(LINEAR S	SUPP	LY)	
MARK	TYPE	MAX AIR FLOW	MAX PRESSURE DROP	SLOTS	SLOT WIDTH	LENGTH	PLENUM INLET SIZE	THROW PATTERN	DAMPER	MAX. NC	FINISH	REMARKS
			inches wg		INCHES	INCHES	INCHES					
LG-1	LINEAR SLOT	190	0.1	2	1	4 8	8" Ø	ADJUSTABLE	BUTTERFLY TYPE	20		PRICE SDS WITH FACTORY SDB PLENUM BOX AND FULLY ADJUSTABLE AIR PATTERN.

			Α	ir dev	VICE SCH	EDULE (R	ETU	RN/EXH	TRUAH	Γ)		
MARK	TYPE	USAGE	MAX FLOW	MAX PRESS DROP	MOUNTING	NOMINAL FACE SIZE	MA X	DAMPER	FINISH	REMARKS		
			CFM	IN WC		IN x IN	NC					
RG-1	EGG CRATE	RETURN	2000	0.100	LAY-IN	24"x 24"	20	OBD	WHITE	PRICE SERIES 80-TSF, 1/2 GRID CORE WITH 1 1/4" FRAME FOR T-BAR INSTALLATION		
RG-2	EGG CRATE	RETURN	1000	0.100	LAY-IN	24"x 12"	20	OBD	WHITE	PRICE SERIES 80-TSF, 1/2 GRID CORE WITH 1 1/4" FRAME FOR T-BAR INSTALLATION		
RG-3	FIXED LOUVERD	return	240	0.100	HARDLID	10X10	20	OBD	WHITE	PRICE SERIES 530 WITH 45 DEG. BLADES AND 3/4" SPACING.		
EG-1	FIXED LOUVERD FACE	EXHAUST	150	0.100	HARDLID	8X8	20	OBD	WHITE	PRICE SERIES 530 WITH 45 DEG. BLADES AND 3/4" SPACING.		
EG-2	FIXED LOUVERD FACE	RETURN	240	0.100	HARDLID	10X10	20	OBD	WHITE	PRICE SERIES 530 WITH 45 DEG. BLADES AND 3/4" SPACING.		
EG-3	EGG CRATE	return	2000	0.100	LAY-IN	24"x 24"	20	OBD	WHITE	PRICE SERIES 80-TSF, 1/2 GRID CORE WITH 1 1/4" FRAME FOR T-BAR INSTALLATION		


					5TH FL	OOR .	AIR TE	RMINA	AL UN	IT SCH	EDULE			
		MAXAIR	MINAIR	RUN- OUT	DUCT INLET	MAX AIR		НОТ	WATER	HEATING	COIL			
	MARK	FLOW	FLOW	SIZE	SIZE	PRESS. DROP	EAT	EWT	LWT	FLOW	CAPA- CITY	MAX WPD	REMARKS	
_		CFM	CFM	IN	IN	IN WG	°F	°F	°F	GPM	BTUH	FT	-	40
	TU-501A	1,310	525	16	12	0.35	55	170	150	1.9	18,650	1.25	PRICE MODEL SDV OR APPROVED EQUAL	
	TU-502A			•		,		NC	T USED					
	TU-503A	575	205	12	8	0.30	55	170	150	0.7	6,980	0.7	PRICE MODEL SDV OR APPROVED EQUAL	
	TU-504A	875	440	14	10	0.35	55	170	150	1.3	13,300	0.8	PRICE MODEL SDV OR APPROVED EQUAL	
	TU-505A	215	80	8	6	0.30	55	170	150	0.5	4,910	0.5	PRICE MODEL SDV OR APPROVED EQUAL	
	TU-506A	1255	440	16	12	0.35	55	170	150	1.4	13,610	1.25	PRICE MODEL SDV OR APPROVED EQUAL	
	TU-507A	1255	440	16	12	0.35	55	170	150	1.4	13,610	1.25	PRICE MODEL SDV OR APPROVED EQUAL	
	TU-508A	185	75	8	6	0.30	55	170	150	0.6	5,710	0.5	PRICE MODEL SDV OR APPROVED EQUAL	
	TU-509A	545	195	12	8	0.30	55	170	150	0.8	7,810	0.7	PRICE MODEL SDV OR APPROVED EQUAL	
	TU-510A	240	85	8	6	0.30	55	170	150	0.5	5,090	0.5	PRICE MODEL SDV OR APPROVED EQUAL	
	TU-511A	370	150	10	8	0.30	55	170	150	0.7	7,460	0.7	PRICE MODEL SDV OR APPROVED EQUAL	ARI Z
	TU-512A	1080	435	16	12	0.35	55	170	150	1.5	14,710	1.25	PRICE MODEL SDV OR APPROVED EQUAL	` ∑ (
	TU-513A	220	80	8	6	0.30	55	170	150	0.5	4,670	0.5	PRICE MODEL SDV OR APPROVED EQUAL	
	TU-514A	365	150	10	8	0.30	55	170	150	0.7	6,960	0.7	PRICE MODEL SDV OR APPROVED EQUAL	
] :1	TU-515A	250	90	10	6	0.30	55	170	150	0.3	3,190	0.5	PRICE MODEL SDV OR APPROVED EQUAL	
	TU-516A	1385	485	16	14	0.40	55	170	150	1.6	15,820	1.3	PRICE MODEL SDV OR APPROVED EQUAL	
	TU-517A	1035	365	14	12	0.35	55	170	150	1.2	11,540	1.25	PRICE MODEL SDV OR APPROVED EQUAL	
	TU-501B	425	150	12	10	0.35	55	170	150	0.5	5,470	0.8	PRICE MODEL SDV OR APPROVED EQUAL	
1	TU-502B	420	150	10	8	0.30	55	170	150	0.6	5,580	0.7	PRICE MODEL SDV OR APPROVED EQUAL	2 2 5 5 5 6 7 7 7 7 9 9 9 9 9 9 9 9 9 9
_	TU-503B	455	160	12	8	0.30	55	170	150	0.5	5,480	0.7	PRICE MODEL SDV OR APPROVED EQUAL	
	TU-504B	620	310	12	8	0.30	55	170	150	1.3	12,540	0.7	PRICE MODEL SDV OR APPROVED EQUAL	
	TU-505B	255	90	10		0.30	55	170	150	0.6	5,980	0.7	PRICE MODEL SDV OR APPROVED EQUAL	
_		515	185	12	10	0.35		170	150	0.7	7,390	0.3	PRICE MODEL SDV OR APPROVED EQUAL	
	TU-506B						55							
	TU-507B	860	305	14	10	0.35	55	170	150	0.9	9,480	0.8	PRICE MODEL SDV OR APPROVED EQUAL	
	TU-508B	910	320	14	10	0.35	55	170	150	1.0	10,060	0.8	PRICE MODEL SDV OR APPROVED EQUAL	
	TU-509B	1865	655	18	16	0.40	55	170	150	2.0	20,490	1.5	PRICE MODEL SDV OR APPROVED EQUAL	150 STR/ ST C
	TU-510B	955	335	14	12	0.35	55	170	150	1.3	13,420	1.25	PRICE MODEL SDV OR APPROVED EQUAL	NIS
	TU-511B	960	340	14	12	0.35	55	170	150	1.4	13,560	1.25	PRICE MODEL SDV OR APPROVED EQUAL	
	TU-512B	960	340	14	12	0.35	56	170	150	1.4	13,560	1.25	PRICE MODEL SDV OR APPROVED EQUAL	MEN ADM 150
	TU-513B	415	150	10	8	0.30	57	170	150	0.6	5,580	0.7	PRICE MODEL SDV OR APPROVED EQUAL	

NOTES

1. INLET STATIC BASED ON ARI 885-98.

ALL SELECTIONS SHALL BE MADE AT AN ALTITUDE OF 2,600 FT.

ADMIN WEST FIFTH FLOOR MECHANICAL SCHEDULES

DRWN BY: AG
CKD BY: JMZ
DATE: 2019/07/22
SCALE: NTS
SHEET NO:

310F 48 w.o. number 19*10427

							AHU-5A, AS	HRAE 62.1-2016 COD	E REVIEW VEI	VTILATION FO	OR MULTIPL	E-ZONE REG	CIRCULATING SYSTE	MS							
System Type													Diversity	1.00			per Sec	tion 6.2.5.3			
ZONE TYPE	ROOM NAME/ NUMBER	OCCUPANCY CLASSIFICATION	Az, ZONE AREA (FT ²)	IS ACTUAL OCCUPANCY KNOWN	Pz, KNOWN OCCUPANCY	1000Pz/Az, OCCUPANCY DENSITY (PERSONS PER 1000 FT ²)	R _P , COMBINED OUTDOOR AIR FLOWRATE (CFM/PERSON)	R _A , OUTDOOR AIR FLOWRATE (CFM/SQFT)	TU NUMBER	TU MAX CFM TO ZONE	TU MIN CFM TO ZONE	TU % MIN	MAXIMUM SUPPLY TO ZONE (CFM)	V _{PZ} , MINIMUM SUPPLY TO ZONE (CFM)	R _P Pz, OCCUPANT OUTDOOR AIR (CFM)	$I P \cdot A_{P} A_{P} P A_{P}$	V _{OZ} =(R _P P _Z +R _A A _Z)/E _Z , ZONE OUTDOOR AIR (CFM)	Z _{P(D)} =V _{OZ} /(V _{PZ}), ZONE OUTDOOR AIR FRACTION	E _{VZ} =1+X _S -Z _D , ZONE VENTILATION EFFICIENCY	REMARKS	
	532 OFFICE	Office	123.3	No	N/A	5	17	N/A	501A	565.0	226.0	40%	565	226	10	0.0	13.1				
	534 OFFICE 524 OPEN	Office	123.3	No	N/A	5	17	N/A	501A	565.0	226.0	40%	565	226	10	0.0	13.1				
	CUBICLES 530 OFFICE	Office Office	264.6 172.7	No No	N/A N/A	5	17	N/A N/A	505A 	95.0 875.0	33.3 437.5	35% 50%	95 875	33 438	22	0.0	28.1 18.3				
	531 OFFICE	Office	137.0	No		5	17	N/A	505A	60.0	21.0	35%	60	21	15	0.0	14.6				
	533 OFFICE	Office	137.0	No	N/A	5	17	N/A	505A	60.0	21.0	35%	60	21	12	0.0	14.6				
	535 OFFICE	Office	137.0	No	N/A	5	17	N/A	510A	60.0	21.0	35%	60	21	12	0.0	14.6				
	536 OFFICE	Office	137.0	No	N/A	5	17	N/A	510A	60.0	21.0	35%	60	21	12	0.0	14.6				
	537 OFFICE	Office	137.0	No	. N/A	5	17	N/A	510A	60.0	21.0	35%	60	21	12	0.0	14.6				
Office_Buildings	538 OFFICE 539 OPEN	Office	137.0	No	. N/A	5	17	N/A	510A 506A	60.0 1,255.0	21.0 439.3	35% 35%	60	21	12	0.0	14.6	0.116	1.046		
	CUBICLES	Office	456.6	No	N/A	5.0	17.0	N/A	507A	1,255.0	439.3	35%	2,510	879	39	0.0	48.5				
	544 OFFICE	Office	122.4	No	. N/A	5	17	N/A	513A	55.0	19.3	35%	55	19	10	0.0	13.0				
	545 OFFICE 546 OFFICE	Office Office	122.4 122.4	No No	N/A N/A	5 5	17	N/A N/A	513A 513A	55.0 55.0	19.3 19.3	35% 35%	55 55	19 19	10	0.0	13.0 13.0				
	547 OFFICE	Office	122.4	No	N/A	5	17	N/A	513A	55.0	19.3	35%	55	19	10	0.0	13.0	-			
	548 OFFICE	Office	166.6	No	N/A	5	17	N/A	512A	875.0	350.0	40%	875	350	14	0.0	17.7				
	549 OFFICE	Office	119.8	No	N/A	5	17	N/A	512A	155.0	62.0	40%	155	62	10	0.0	12.7				
	550 OFFICE 551 OPEN	Office	117.4	No	N/A	5	17	N/A	515A	250.0	87.5	35%	250	88	10	0.0	12.5				
	CUBICLES	Office	394.8	No	N/A	5	17	N/A 	516A	1,385.0	484.8	35%	1,385	485	34	0.0	41.9				
	528 CORR	corridors	220.7	Yes	0	N/A	0	0.06	<u>1</u> 501A	110.0	44.0	40%	110	44	0	13.2	16.6				
	529 CORR	corridors	264.9	Yes	0	N/A	0	0.06	501A	70.0	28.0	40%	70	28	0	15.9	19.9	0.648 0.514			
	505 CORR	corridors	578.9	Yes	0	N/A	0	0.06	508A	145.0	58.0	40%	145	58	0	34.7	43.4				
	540 CORR	corridors	150.8	Yes	. 0	N/A	0	0.06	508A	40.0	16.0	40%	40	16	0	9.0	11.3				
General	541 CORR	corridors	176.0	Yes	. 0	N/A	0	0.06	511A	45.0	18.0	40%	45	18	0	10.6	13.2		0.514		
	542 CORR 543 CORR	corridors corridors	182.7 133.9	Yes	0	N/A N/A	0	0.06	512A 511A	50.0 35.0	20.0	40% 40%	50 35	20	0	11.0	13.7 10.0				
	556 ALCOVE	corridors	59.6	Yes Yes	. 0	N/A N/A	0	0.06	511A	15.0	6.0	40%	15	6	0	8.0 3.6	4.5				
	560 ALCOVE	corridors	29.6	Yes	0	N/A	0	0.06	511A	10.0	4.0	40%	10	4	0	1.8	2.2				
	520 LG CONF	Conference/me	473.6	No	0	50	6	N/A	509A	545.0	190.8	35%	545	191	142	0.0	177.6				
General	526 CONF	eting Office	219.3	No	. N/A	5	17	N/A	503A	575.0	201.3	35%	575	201	19	0.0	23.3	0.512	0.649		
Office_Buildings	552 BREAK	Breakrooms	232.5	No	N/A	50	7	N/A	517A	1,035.0	362.3	35%	1,035	362	81	0.0	101.7	0.281	0.881		
				, , ,						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									3,007		
	554 LACTATION	Restrooms	52.5	No	N/A	0	0	N/A	514A	55.0	22.0	40%	55	22	0	0.0	0.0			Exhaust requirement only per Section 6.2.8 & Table 6-4	
Office_Buildings	557 WOMENS	Restrooms	168.8	No	N/A	0	0	N/A	514A	120.0	48.0	40%	120	48	0	0.0	0.0			Exhaust requirement only per Section 6.2.8 & Table 6-4	
omce_policings	558 MENS	Restrooms	177.9	No	N/A	0	0	N/A	514A	125.0	50.0	40%	125	50	0	0.0	0.0			Exhaust requirement only per Section 6.2.8 & Table 6-4	
	559 TOILET	Restrooms	88.0	No	N/A	0	0	N/A	514A	65.0	26.0	40%	65	26	0	0.0	0.0			Exhaust requirement only per Section 6.2.8 & Table 6-4	
	500 PUBLIC																				
Office_Buildings	LOBBY	Reception Areas	259.2	No	N/A	30	7	N/A	511A	265.0	106.0	40%	265	106	54	0.0	68.0	0.642	0.520		
	Table 6.2.5.2 Calculations										<u> </u>	x A Calcul		Use Appendix A to calculate Ventilation Efficiency, E _{V[Z]}							
								Max Z _{P(D})=				S=VOU/VPS=		Uncorrected Outside Air Total, V _{OU} = 681 Supply Air Total at Minimum, V _{PS} =SUM(V _{PZ})= 4,203							
								E _v =	N/A		E	$V = Min(E_{VZ})$	0.51								
															Corrected Outside Air Total Requirement, $V_{OI}=V_{OU}/E_{V(Z)}=1,324$						
	T			T			T		<u> </u>		I		T		T	<u> </u>	<u> </u>	Prov	ided Outside Air=	1,350	
																			<u> </u>		

Climate Zone:

Mechanical Compliance Certificate

Project Information

Energy Code: 2018 IECC
Project Title: Pima County
Location: Pima County

Pima County Admin West Fifth Flr. TI
Pima County location < 4000 feet, Arizona

New Construction

Project Type:

Construction Site: Owner/Agent: 150 W. Congress Pima County Tucson, AZ 85701

Designer/Contractor: GLHN Architects & Engineers 2939 E. Broadway Blvd. Tucson, AZ 85716 520-881-4546

Reduced interior lighting power. Requirements are implicitly enforced within interior lighting allowance calculations.

Mechanical Systems List Quantity System Type & Description

Additional Efficiency Package(s)

Quantity System Type & Descriptio 1 AHU-5A (Multiple-Zone):

Heating: 1 each - Hydronic or Steam Coil, Hot Water, Capacity = 168 kBtu/h

No minimum efficiency requirement applies

Cooling: 1 each - Hydronic Coil, Capacity = 393 kBtu/h, Water Economizer

No minimum efficiency requirement applies

Fan System: SF-5A | Fir. 5 West -- Compliance (Brake HP method): Passes

Fans:
SF5A Supply, Multi-Zone VAV, 10200 CFM, 15.0 motor nameplate hp, 11.8 design brake hp (11.9 max. BHP), 75.0 fan efficiency

Pressure Drop Credits: Particulate filtration credit: MERV 13 through 15, 2.2222 credit

AHU-5B (Multiple-Zone):

Hosting: 1 and holdering a Stoom Coll. Het Water Conseils. 150 kBlud.

Heating: 1 each - Hydronic or Steam Coil, Hot Water, Capacity = 158 kBtu/h
No minimum efficiency requirement applies
Cooling: 1 each - Hydronic Coil, Capacity = 354 kBtu/h, Water Economizer
No minimum efficiency requirement applies
Fan System: SF58 | Fir. 5 East -- Compliance (Brake HP method): Passes

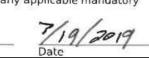
Fans: SF5B Supply, Multi-Zone VAV, 9000 CFM, 15.0 motor nameplate hp, 9.6 design brake hp (10.3 max. BHP), 75.0 fan efficiency

Pressure Drop Credits: Particulate filtration credit: MERV 13 through 15, 1.9608 credit

1 FCU-501 (Single Zone):

Cooling: 1 each - Hydronic Coil, Capacity = 8 kBtu/h, Water Economizer

No minimum efficiency requirement applies


Fan System: FCU Fan | Elect. Rm. -- Compliance (Motor nameplate HP method): Passes

Fans: FCU501 Supply, Constant Volume, 255 CFM, 0.1 motor nameplate hp, 0.0 fan efficiency grade

Mechanical Compliance Statement

Compliance Statement: The proposed mechanical design represented in this document is consistent with the building plans, specifications, and other calculations submitted with this permit application. The proposed mechanical systems have been designed to meet the 2018 IECC requirements in COMcheck Version 4.1.1.0 and to comply with any applicable mandatory requirements listed in the Inspection Checklist.

Jou Ziegkr II, Sur. Mech. Engineer

ARCHITECTS & ENGINEERS, INC

2939 E. Broadway Blvd, Tucson, AZ 85716
T 520.881.4546 F 520.795.1822 GLHN.com

MENT, 150 WEST CONGRESS, TUCSON

ADMINISTRATION WEST BUILDING

150 WEST CONGRESS

TUCSON, AZ

MEC

(520)740-

85701

ARIZONA

ADMIN WEST FIFTH FLOOR TI MECHANICAL CALCULATIONS

SEAL SEAL STINGELING RONALD DOUGLAS STINGELING RONALD TO SEAL STINGELING REVS: DATE:

DRWN BY: AG
CKD BY: JMZ
DATE: 2019/07/22
SCALE: NTS
SHEET NO:

 $\mathbb{F}^{\mathbb{A}}$

M7_2
320F 48
W.O. NUMBER
19*10427